These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 3347038)

  • 1. Drug test chamber: a titanium implant for administration of biochemical agents to a standardized bone callus in situ.
    Aspenberg P; Albrektsson T; Lohmander LS; Thorngren KG
    J Biomed Eng; 1988 Jan; 10(1):70-3. PubMed ID: 3347038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermittent micromotion inhibits bone ingrowth. Titanium implants in rabbits.
    Aspenberg P; Goodman S; Toksvig-Larsen S; Ryd L; Albrektsson T
    Acta Orthop Scand; 1992 Apr; 63(2):141-5. PubMed ID: 1590046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local application of growth-factor IGF-1 to healing bone. Experiments with a titanium chamber in rabbits.
    Aspenberg P; Albrektsson T; Thorngren KG
    Acta Orthop Scand; 1989 Oct; 60(5):607-10. PubMed ID: 2603664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of callus deformation time. Bone chamber study in rabbits.
    Aspenberg P; Goodman SB; Wang JS
    Clin Orthop Relat Res; 1996 Jan; (322):253-61. PubMed ID: 8542702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone ingrowth into weight-bearing porous fiber titanium implants. Mechanical and biochemical correlations.
    Barth E; Ronningen H; Solheim LF; Saethren B
    J Orthop Res; 1986; 4(3):356-61. PubMed ID: 3734941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bone chamber for investigation of gas pressure. Oxygen tension measured in rabbits.
    Listrom RD; Symington JM; Albrektsson T
    Acta Orthop Scand; 1988 Aug; 59(4):454-8. PubMed ID: 3421085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of non-collagenous proteins of bone formed in titanium implants: experimental study in the rabbit tibia, using a bone harvest chamber.
    Lundgren T; Sennerby L
    Biomaterials; 1990 Apr; 11(3):216-8. PubMed ID: 2350560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basic fibroblast growth factor infused at different times during bone graft incorporation. Titanium chamber study in rats.
    Wang JS; Aspenberg P
    Acta Orthop Scand; 1996 Jun; 67(3):229-36. PubMed ID: 8686458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of amplitude of micromotion on bone ingrowth into titanium chambers implanted in the rabbit tibia.
    Goodman S; Aspenberg P
    Biomaterials; 1992; 13(13):944-8. PubMed ID: 1477264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The repeated sampling bone chamber: a new permanent titanium implant to study bone grafts in the goat.
    Lamerigts N; Aspenberg P; Buma P; Versleyen D; Slooff TJ
    Lab Anim Sci; 1997 Aug; 47(4):401-6. PubMed ID: 9306314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-dependent sensory nerve ingrowth into a bone conduction chamber.
    Madsen JE; Hukkanen M; Aspenberg P; Polak J; Nordsletten L
    Acta Orthop Scand; 2000 Feb; 71(1):74-9. PubMed ID: 10743998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone formation rate in osseointegrated titanium implants. Influence of locally applied haemostasis, peripheral blood, autologous bone marrow and fibrin adhesive system (FAS).
    Kälebo P; Buch F; Albrektsson T
    Scand J Plast Reconstr Surg Hand Surg; 1988; 22(1):53-60. PubMed ID: 2455333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraosseous BMP implants in rabbits. Inhibitory effect on bone formation.
    Jeppsson C; Boström M; Aspenberg P
    Acta Orthop Scand; 1999 Feb; 70(1):77-83. PubMed ID: 10191754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. COX-2 selective NSAID decreases bone ingrowth in vivo.
    Goodman S; Ma T; Trindade M; Ikenoue T; Matsuura I; Wong N; Fox N; Genovese M; Regula D; Smith RL
    J Orthop Res; 2002 Nov; 20(6):1164-9. PubMed ID: 12472224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recurrent bone regeneration in titanium implants. Experimental model for determining the healing capacity of bone using quantitative microradiography.
    Kälebo P; Jacobsson M
    Biomaterials; 1988 Jul; 9(4):295-301. PubMed ID: 3214653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue ingrowth into titanium and hydroxyapatite-coated implants during stable and unstable mechanical conditions.
    Søballe K; Hansen ES; B-Rasmussen H; Jørgensen PH; Bünger C
    J Orthop Res; 1992 Mar; 10(2):285-99. PubMed ID: 1311039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake and biodistribution of 99mtechnetium methylene-[32P] diphosphonate during endosteal healing around titanium, stainless steel and hydroxyapatite implants in rat tibial bone.
    Sela J; Shani J; Kohavi D; Soskolne WA; Itzhak K; Boyan BD; Schwartz Z
    Biomaterials; 1995 Dec; 16(18):1373-80. PubMed ID: 8590763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxyapatite coating modifies implant membrane formation. Controlled micromotion studied in dogs.
    Søballe K; Brockstedt-Rasmussen H; Hansen ES; Bünger C
    Acta Orthop Scand; 1992 Apr; 63(2):128-40. PubMed ID: 1590045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical studies of tibial fracture callus in growing osteopenic rats.
    Lindholm TS
    Acta Chir Scand Suppl; 1974; 449():27-32. PubMed ID: 4533566
    [No Abstract]   [Full Text] [Related]  

  • 20. The bone growth chamber for quantification of electrically induced osteogenesis.
    Buch F; Albrektsson T; Herbst E
    J Orthop Res; 1986; 4(2):194-203. PubMed ID: 3519909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.