These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 33470470)

  • 1. Electronic Conductive Inorganic Cathodes Promising High-Energy Organic Batteries.
    Mao M; Wang S; Lin Z; Liu T; Hu YS; Li H; Huang X; Chen L; Suo L
    Adv Mater; 2021 Feb; 33(8):e2005781. PubMed ID: 33470470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic Electrode Materials for Energy Storage and Conversion: Mechanism, Characteristics, and Applications.
    Yuan S; Huang X; Kong T; Yan L; Wang Y
    Acc Chem Res; 2024 May; 57(10):1550-1563. PubMed ID: 38723018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastable Organic Anode Enabled by Electrochemically Active MXene Binder toward Advanced Potassium Ion Storage.
    Zhou S; Zhang P; Li Y; Feng L; Xu M; Soomro RA; Xu B
    ACS Nano; 2024 Jun; 18(24):16027-16040. PubMed ID: 38833556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable Hexaazatrinaphthalene-Based Planar Polymer Cathode Material for Organic Lithium-Ion Batteries.
    Sun Z; Yao H; Li J; Liu B; Lin Z; Shu M; Liu H; Zhu S; Guan S
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):42603-42610. PubMed ID: 37639524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dense All-Electrochem-Active Electrodes for All-Solid-State Lithium Batteries.
    Li M; Liu T; Shi Z; Xue W; Hu YS; Li H; Huang X; Li J; Suo L; Chen L
    Adv Mater; 2021 Jul; 33(26):e2008723. PubMed ID: 33998714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic Cathode Materials for Rechargeable Aluminum-Ion Batteries.
    Huang Z; Du X; Ma M; Wang S; Xie Y; Meng Y; You W; Xiong L
    ChemSusChem; 2023 May; 16(9):e202202358. PubMed ID: 36732888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries.
    Song Z; Qian Y; Zhang T; Otani M; Zhou H
    Adv Sci (Weinh); 2015 Sep; 2(9):1500124. PubMed ID: 27980977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Performant All-Organic Aqueous Sodium-Ion Batteries Enabled by PTCDA Electrodes and a Hybrid Na/Mg Electrolyte.
    Karlsmo M; Bouchal R; Johansson P
    Angew Chem Int Ed Engl; 2021 Nov; 60(46):24709-24715. PubMed ID: 34528364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoengineered Organic Electrodes for Highly Durable and Ultrafast Cycling of Organic Sodium-Ion Batteries.
    Thangavel R; Moorthy M; Ganesan BK; Lee W; Yoon WS; Lee YS
    Small; 2020 Oct; 16(41):e2003688. PubMed ID: 32964623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Redox-Active 2D Metal-Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity.
    Jiang Q; Xiong P; Liu J; Xie Z; Wang Q; Yang XQ; Hu E; Cao Y; Sun J; Xu Y; Chen L
    Angew Chem Int Ed Engl; 2020 Mar; 59(13):5273-5277. PubMed ID: 31893570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Proof-of-Concept of Anode-Free Rechargeable Mg Batteries.
    Mao M; Fan X; Xie W; Wang H; Suo L; Wang C
    Adv Sci (Weinh); 2023 May; 10(14):e2207563. PubMed ID: 36938852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyimides as Promising Cathodes for Metal-Organic Batteries: A Comparison between Divalent (Ca
    Monti D; Patil N; Black AP; Raptis D; Mavrandonakis A; Froudakis GE; Yousef I; Goujon N; Mecerreyes D; Marcilla R; Ponrouch A
    ACS Appl Energy Mater; 2023 Jul; 6(13):7250-7257. PubMed ID: 37448980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrolyte-Induced Morphology Evolution to Boost Potassium Storage Performance of Perylene-3,4,9,10-tetracarboxylic Dianhydride.
    Zhao Y; Sui S; Yang Q; Li J; Chu S; Gu M; Li L; Shi S; Zhang Y; Chen Z; Chou S; Lei K
    Nano Lett; 2024 Apr; 24(15):4546-4553. PubMed ID: 38588452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategy of Enhancing the Volumetric Energy Density for Lithium-Sulfur Batteries.
    Liu YT; Liu S; Li GR; Gao XP
    Adv Mater; 2021 Feb; 33(8):e2003955. PubMed ID: 33368710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesoporous Polyimide-Linked Covalent Organic Framework with Multiple Redox-Active Sites for High-Performance Cathodic Li Storage.
    Yang X; Gong L; Liu X; Zhang P; Li B; Qi D; Wang K; He F; Jiang J
    Angew Chem Int Ed Engl; 2022 Aug; 61(31):e202207043. PubMed ID: 35638157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene composite 3,4,9,10-perylenetetracarboxylic sodium salts with a honeycomb structure as a high performance anode material for lithium ion batteries.
    Xu M; Zhao J; Chen J; Chen K; Zhang Q; Zhong S
    Nanoscale Adv; 2021 Jul; 3(15):4561-4571. PubMed ID: 36133480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymorph Engineering for Boosted Volumetric Na-Ion and Li-Ion Storage.
    Zhang L; Wei Z; Yao S; Gao Y; Jin X; Chen G; Shen Z; Du F
    Adv Mater; 2021 May; 33(20):e2100210. PubMed ID: 33829567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.