These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 33470974)

  • 1. Model coupling biomechanics and fluid dynamics for the simulation of controlled flapping flight.
    Colognesi V; Ronsse R; Chatelain P
    Bioinspir Biomim; 2021 Feb; 16(2):. PubMed ID: 33470974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clap and fling mechanism with interacting porous wings in tiny insect flight.
    Santhanakrishnan A; Robinson AK; Jones S; Low AA; Gadi S; Hedrick TL; Miller LA
    J Exp Biol; 2014 Nov; 217(Pt 21):3898-909. PubMed ID: 25189374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flapping wing aerodynamics: from insects to vertebrates.
    Chin DD; Lentink D
    J Exp Biol; 2016 Apr; 219(Pt 7):920-32. PubMed ID: 27030773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerodynamic effects of flexibility in flapping wings.
    Zhao L; Huang Q; Deng X; Sane SP
    J R Soc Interface; 2010 Mar; 7(44):485-97. PubMed ID: 19692394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenomenology and scaling of optimal flapping wing kinematics.
    Gehrke A; Mulleners K
    Bioinspir Biomim; 2021 Jan; 16(2):. PubMed ID: 33264765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight.
    Wang J; Ren Y; Li C; Dong H
    Bioinspir Biomim; 2019 Jun; 14(4):046010. PubMed ID: 31096194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The aerodynamics of insect flight.
    Sane SP
    J Exp Biol; 2003 Dec; 206(Pt 23):4191-208. PubMed ID: 14581590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting power-optimal kinematics of avian wings.
    Parslew B
    J R Soc Interface; 2015 Jan; 12(102):20140953. PubMed ID: 25392398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight.
    Birch JM; Dickinson MH
    J Exp Biol; 2003 Jul; 206(Pt 13):2257-72. PubMed ID: 12771174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers.
    Muijres FT; Bowlin MS; Johansson LC; Hedenström A
    J R Soc Interface; 2012 Feb; 9(67):292-303. PubMed ID: 21676971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings.
    Zhao L; Deng X; Sane SP
    Bioinspir Biomim; 2011 Sep; 6(3):036007. PubMed ID: 21852729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight.
    KleinHeerenbrink M; Johansson LC; Hedenström A
    J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28539482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wing-wake interaction destabilizes hover equilibrium of a flapping insect-scale wing.
    Bluman J; Kang CK
    Bioinspir Biomim; 2017 Jun; 12(4):046004. PubMed ID: 28463224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vortex wake and flight kinematics of a swift in cruising flight in a wind tunnel.
    Henningsson P; Spedding GR; Hedenström A
    J Exp Biol; 2008 Mar; 211(Pt 5):717-30. PubMed ID: 18281334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational investigation of lift generation and power expenditure of Pratt's roundleaf bat (Hipposideros pratti) in forward flight.
    Windes P; Fan X; Bender M; Tafti DK; Müller R
    PLoS One; 2018; 13(11):e0207613. PubMed ID: 30485321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical assessment of wake-based estimation of instantaneous lift in flapping flight of large birds.
    Colognesi V; Ronsse R; Chatelain P
    PLoS One; 2023; 18(5):e0284714. PubMed ID: 37141190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wing-wake interaction: comparison of 2D and 3D flapping wings in hover flight.
    Lee YJ; Lua KB
    Bioinspir Biomim; 2018 Sep; 13(6):066003. PubMed ID: 30132443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.
    Nakata T; Liu H
    Proc Biol Sci; 2012 Feb; 279(1729):722-31. PubMed ID: 21831896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.