These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33471088)

  • 1. Genome-scale de novo assembly using ALGA.
    Swat S; Laskowski A; Badura J; Frohmberg W; Wojciechowski P; Swiercz A; Kasprzak M; Blazewicz J
    Bioinformatics; 2021 Jul; 37(12):1644-1651. PubMed ID: 33471088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragmentation and Coverage Variation in Viral Metagenome Assemblies, and Their Effect in Diversity Calculations.
    García-López R; Vázquez-Castellanos JF; Moya A
    Front Bioeng Biotechnol; 2015; 3():141. PubMed ID: 26442255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FastEtch: A Fast Sketch-Based Assembler for Genomes.
    Ghosh P; Kalyanaraman A
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1091-1106. PubMed ID: 28910776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of string and de Bruijn graphs for genome assembly.
    Huang YT; Liao CF
    Bioinformatics; 2016 May; 32(9):1301-7. PubMed ID: 26755626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clover: a clustering-oriented de novo assembler for Illumina sequences.
    Hsieh MF; Lu CL; Tang CY
    BMC Bioinformatics; 2020 Nov; 21(1):528. PubMed ID: 33203354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TraRECo: a greedy approach based de novo transcriptome assembler with read error correction using consensus matrix.
    Yoon S; Kim D; Kang K; Park WJ
    BMC Genomics; 2018 Sep; 19(1):653. PubMed ID: 30180798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads.
    Namiki T; Hachiya T; Tanaka H; Sakakibara Y
    Nucleic Acids Res; 2012 Nov; 40(20):e155. PubMed ID: 22821567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Read mapping on de Bruijn graphs.
    Limasset A; Cazaux B; Rivals E; Peterlongo P
    BMC Bioinformatics; 2016 Jun; 17(1):237. PubMed ID: 27306641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RResolver: efficient short-read repeat resolution within ABySS.
    Nikolić V; Afshinfard A; Chu J; Wong J; Coombe L; Nip KM; Warren RL; Birol I
    BMC Bioinformatics; 2022 Jun; 23(1):246. PubMed ID: 35729491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inference of viral quasispecies with a paired de Bruijn graph.
    Freire B; Ladra S; Paramá JR; Salmela L
    Bioinformatics; 2021 May; 37(4):473-481. PubMed ID: 32926162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of short read metagenomic assembly.
    Charuvaka A; Rangwala H
    BMC Genomics; 2011; 12 Suppl 2(Suppl 2):S8. PubMed ID: 21989307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PERGA: a paired-end read guided de novo assembler for extending contigs using SVM and look ahead approach.
    Zhu X; Leung HC; Chin FY; Yiu SM; Quan G; Liu B; Wang Y
    PLoS One; 2014; 9(12):e114253. PubMed ID: 25461763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LazyB: fast and cheap genome assembly.
    Gatter T; von Löhneysen S; Fallmann J; Drozdova P; Hartmann T; Stadler PF
    Algorithms Mol Biol; 2021 Jun; 16(1):8. PubMed ID: 34074310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A memory-efficient data structure representing exact-match overlap graphs with application for next-generation DNA assembly.
    Dinh H; Rajasekaran S
    Bioinformatics; 2011 Jul; 27(14):1901-7. PubMed ID: 21636593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. deBGR: an efficient and near-exact representation of the weighted de Bruijn graph.
    Pandey P; Bender MA; Johnson R; Patro R
    Bioinformatics; 2017 Jul; 33(14):i133-i141. PubMed ID: 28881995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Faucet: streaming de novo assembly graph construction.
    Rozov R; Goldshlager G; Halperin E; Shamir R
    Bioinformatics; 2018 Jan; 34(1):147-154. PubMed ID: 29036597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs.
    Kundeti VK; Rajasekaran S; Dinh H; Vaughn M; Thapar V
    BMC Bioinformatics; 2010 Nov; 11():560. PubMed ID: 21078174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paired de bruijn graphs: a novel approach for incorporating mate pair information into genome assemblers.
    Medvedev P; Pham S; Chaisson M; Tesler G; Pevzner P
    J Comput Biol; 2011 Nov; 18(11):1625-34. PubMed ID: 21999285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LightAssembler: fast and memory-efficient assembly algorithm for high-throughput sequencing reads.
    El-Metwally S; Zakaria M; Hamza T
    Bioinformatics; 2016 Nov; 32(21):3215-3223. PubMed ID: 27412092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.