These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33471635)

  • 1. Electrooxidation of coragen-contaminated wastewater using graphite electrodes and sorbent nano-hydroxyapatite.
    Thangamani R; Periyaraman PM; Thanarasu A; Velayutham K; Dhanasekaran A; Subramanian S
    Environ Technol; 2022 Apr; 43(11):1603-1612. PubMed ID: 33471635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical oxidation of tannic acid contaminated wastewater by RuO2/IrO2/TaO2-coated titanium and graphite anodes.
    Govindaraj M; Muthukumar M; Raju GB
    Environ Technol; 2010 Dec; 31(14):1613-22. PubMed ID: 21275257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical degradation of psychoactive drug caffeine in aqueous solution using graphite electrode.
    Periyasamy S; Muthuchamy M
    Environ Technol; 2018 Sep; 39(18):2373-2381. PubMed ID: 28705089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of electro-oxidation process for the treatment of Reactive Orange 107 using response surface methodology.
    Rajkumar K; Muthukumar M
    Environ Sci Pollut Res Int; 2012 Jan; 19(1):148-60. PubMed ID: 21698362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical oxidation of textile industry wastewater by graphite electrodes.
    Bhatnagar R; Joshi H; Mall ID; Srivastava VC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(8):955-66. PubMed ID: 24766597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment of oilfield wastewater by combined process of micro-electrolysis, Fenton oxidation and coagulation.
    Zhang Z
    Water Sci Technol; 2017 Dec; 76(11-12):3278-3288. PubMed ID: 29236007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Process Optimization of Electrochemical Treatment of COD and Total Nitrogen Containing Wastewater.
    Yao J; Mei Y; Jiang J; Xia G; Chen J
    Int J Environ Res Public Health; 2022 Jan; 19(2):. PubMed ID: 35055672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrolytic removal of ammonia from aqueous phase by Pt/Ti anode.
    Li L; Huang Y; Liu Y; Li Y
    Water Sci Technol; 2013; 67(11):2451-7. PubMed ID: 23752376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of hybrid electrocoagulation and electrooxidation process for treatment of wastewater from the cotton textile industry.
    Asfaha YG; Zewge F; Yohannes T; Kebede S
    Chemosphere; 2022 Sep; 302():134706. PubMed ID: 35523291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical oxidation of bisphenol-A from aqueous solution using graphite electrodes.
    Govindaraj M; Rathinam R; Sukumar C; Uthayasankar M; Pattabhi S
    Environ Technol; 2013; 34(1-4):503-11. PubMed ID: 23530365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective oxidation of bromide in wastewater brines from hydraulic fracturing.
    Sun M; Lowry GV; Gregory KB
    Water Res; 2013 Jul; 47(11):3723-31. PubMed ID: 23726709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing COD removal from greywater by photoelectro-persulfate process using Box-Behnken design: assessment of effluent quality and electrical energy consumption.
    Ahmadi M; Ghanbari F
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19350-61. PubMed ID: 27370537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated process for wet scrubber wastewater treatment using electrooxidation and pressure-driven membrane filtration.
    Belibagli P; Isik Z; Özdemir S; Gonca S; Dizge N; Awasthi MK; Balakrishnan D
    Chemosphere; 2022 Dec; 308(Pt 2):136216. PubMed ID: 36075362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High efficiencies in the electrochemical oxidation of an anthraquinonic dye with conductive-diamond anodes.
    Aquino JM; Rocha-Filho RC; Sáez C; Cañizares P; Rodrigo MA
    Environ Sci Pollut Res Int; 2014; 21(14):8442-50. PubMed ID: 24652577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on COD removal mechanism and reaction kinetics of oilfield wastewater.
    Yin XQ; Jing B; Chen WJ; Zhang J; Liu Q; Chen W
    Water Sci Technol; 2017 Nov; 76(9-10):2655-2663. PubMed ID: 29168705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of pre-treatment methods on membrane flux, COD, and total phenol removal efficiencies for membrane treatment of pistachio wastewater.
    Ozay Y; Dizge N
    J Environ Manage; 2022 May; 310():114762. PubMed ID: 35220102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the effect of different electrodes and their connections on the removal efficiency of 4-nitrophenol from aqueous solution by electrocoagulation.
    Modirshahla N; Behnajady MA; Mohammadi-Aghdam S
    J Hazard Mater; 2008 Jun; 154(1-3):778-86. PubMed ID: 18162293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of mixed industrial wastewater by electrocoagulation and indirect electrochemical oxidation.
    Nidheesh PV; Kumar A; Syam Babu D; Scaria J; Suresh Kumar M
    Chemosphere; 2020 Jul; 251():126437. PubMed ID: 32171129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pretreatment of printing and dyeing wastewater by Fe/C micro-electrolysis combined with H
    Wang Y; Wu X; Yi J; Chen L; Lan T; Dai J
    Water Sci Technol; 2018 Jul; 2017(3):707-717. PubMed ID: 30016288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decontamination of synthetic textile wastewater by electrochemical processes: energetic and toxicological evaluation.
    Mountassir Y; Benyaich A; Rezrazi M; Berçot P; Gebrati L
    Water Sci Technol; 2012; 66(12):2586-96. PubMed ID: 23109574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.