BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 33471769)

  • 1. Constructing Accurate and Efficient Deep Spiking Neural Networks With Double-Threshold and Augmented Schemes.
    Yu Q; Ma C; Song S; Zhang G; Dang J; Tan KC
    IEEE Trans Neural Netw Learn Syst; 2022 Apr; 33(4):1714-1726. PubMed ID: 33471769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A TTFS-based energy and utilization efficient neuromorphic CNN accelerator.
    Yu M; Xiang T; P S; Chu KTN; Amornpaisannon B; Tavva Y; Miriyala VPK; Carlson TE
    Front Neurosci; 2023; 17():1121592. PubMed ID: 37214405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rethinking the performance comparison between SNNS and ANNS.
    Deng L; Wu Y; Hu X; Liang L; Ding Y; Li G; Zhao G; Li P; Xie Y
    Neural Netw; 2020 Jan; 121():294-307. PubMed ID: 31586857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance deep spiking neural networks via at-most-two-spike exponential coding.
    Chen Y; Feng R; Xiong Z; Xiao J; Liu JK
    Neural Netw; 2024 Aug; 176():106346. PubMed ID: 38713970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-accuracy deep ANN-to-SNN conversion using quantization-aware training framework and calcium-gated bipolar leaky integrate and fire neuron.
    Gao H; He J; Wang H; Wang T; Zhong Z; Yu J; Wang Y; Tian M; Shi C
    Front Neurosci; 2023; 17():1141701. PubMed ID: 36968504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training.
    Liu F; Zhao W; Chen Y; Wang Z; Yang T; Jiang L
    Front Neurosci; 2021; 15():756876. PubMed ID: 34803591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures.
    Lee C; Sarwar SS; Panda P; Srinivasan G; Roy K
    Front Neurosci; 2020; 14():119. PubMed ID: 32180697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing Deeper Spiking Neural Networks for Dynamic Vision Sensing.
    Kim Y; Panda P
    Neural Netw; 2021 Dec; 144():686-698. PubMed ID: 34662827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Training much deeper spiking neural networks with a small number of time-steps.
    Meng Q; Yan S; Xiao M; Wang Y; Lin Z; Luo ZQ
    Neural Netw; 2022 Sep; 153():254-268. PubMed ID: 35759953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Processing of Spatio-Temporal Data Streams With Spiking Neural Networks.
    Kugele A; Pfeil T; Pfeiffer M; Chicca E
    Front Neurosci; 2020; 14():439. PubMed ID: 32431592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SPIDE: A purely spike-based method for training feedback spiking neural networks.
    Xiao M; Meng Q; Zhang Z; Wang Y; Lin Z
    Neural Netw; 2023 Apr; 161():9-24. PubMed ID: 36736003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic Learning With Augmented Spikes.
    Yu Q; Song S; Ma C; Pan L; Tan KC
    IEEE Trans Neural Netw Learn Syst; 2022 Mar; 33(3):1134-1146. PubMed ID: 33471768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. STCA-SNN: self-attention-based temporal-channel joint attention for spiking neural networks.
    Wu X; Song Y; Zhou Y; Jiang Y; Bai Y; Li X; Yang X
    Front Neurosci; 2023; 17():1261543. PubMed ID: 38027490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Backpropagation-Based Learning Techniques for Deep Spiking Neural Networks: A Survey.
    Dampfhoffer M; Mesquida T; Valentian A; Anghel L
    IEEE Trans Neural Netw Learn Syst; 2023 Apr; PP():. PubMed ID: 37027264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spiking neural networks fine-tuning for brain image segmentation.
    Yue Y; Baltes M; Abuhajar N; Sun T; Karanth A; Smith CD; Bihl T; Liu J
    Front Neurosci; 2023; 17():1267639. PubMed ID: 38027484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantization Framework for Fast Spiking Neural Networks.
    Li C; Ma L; Furber S
    Front Neurosci; 2022; 16():918793. PubMed ID: 35928011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Event-Driven Intrinsic Plasticity for Spiking Convolutional Neural Networks.
    Zhang A; Li X; Gao Y; Niu Y
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):1986-1995. PubMed ID: 34106868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing and Accelerating the Bottlenecks of Training Deep SNNs With Backpropagation.
    Chen R; Li L
    Neural Comput; 2020 Dec; 32(12):2557-2600. PubMed ID: 32946710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gradient-based feature-attribution explainability methods for spiking neural networks.
    Bitar A; Rosales R; Paulitsch M
    Front Neurosci; 2023; 17():1153999. PubMed ID: 37829721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Latency Spiking Neural Networks Using Pre-Charged Membrane Potential and Delayed Evaluation.
    Hwang S; Chang J; Oh MH; Min KK; Jang T; Park K; Yu J; Lee JH; Park BG
    Front Neurosci; 2021; 15():629000. PubMed ID: 33679308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.