These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33471895)

  • 1. Organic acids: versatile stress-response roles in plants.
    Panchal P; Miller AJ; Giri J
    J Exp Bot; 2021 May; 72(11):4038-4052. PubMed ID: 33471895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate change driven plant-metal-microbe interactions.
    Rajkumar M; Prasad MN; Swaminathan S; Freitas H
    Environ Int; 2013 Mar; 53():74-86. PubMed ID: 23347948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion pattern, antioxidation activity and root exudation.
    UdDin I; Bano A; Masood S
    Ecotoxicol Environ Saf; 2015 Mar; 113():271-8. PubMed ID: 25528377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic acid anions: An effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils.
    Chen ZC; Liao H
    J Genet Genomics; 2016 Nov; 43(11):631-638. PubMed ID: 27890545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
    Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E
    Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Roles of organic acid metabolism in plant adaptation to nutrient deficiency and aluminum toxicity stress].
    Wang J; Shen Q
    Ying Yong Sheng Tai Xue Bao; 2006 Nov; 17(11):2210-6. PubMed ID: 17269355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidating silicon-mediated distinct morpho-physio-biochemical attributes and organic acid exudation patterns of cadmium stressed Ajwain (Trachyspermum ammi L.).
    Javed MT; Saleem MH; Aslam S; Rehman M; Iqbal N; Begum R; Ali S; Alsahli AA; Alyemeni MN; Wijaya L
    Plant Physiol Biochem; 2020 Dec; 157():23-37. PubMed ID: 33069978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyamine Action under Metal/Metalloid Stress: Regulation of Biosynthesis, Metabolism, and Molecular Interactions.
    Hasanuzzaman M; Alhaithloul HAS; Parvin K; Bhuyan MHMB; Tanveer M; Mohsin SM; Nahar K; Soliman MH; Mahmud JA; Fujita M
    Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31261998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental applications of chitosan and its derivatives.
    Yong SK; Shrivastava M; Srivastava P; Kunhikrishnan A; Bolan N
    Rev Environ Contam Toxicol; 2015; 233():1-43. PubMed ID: 25367132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: A review.
    Hamid Y; Tang L; Hussain B; Usman M; Lin Q; Rashid MS; He Z; Yang X
    Sci Total Environ; 2020 Mar; 707():136121. PubMed ID: 31865074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of low-molecular-weight organic acids on copper toxicity in E. fetida in an acute exposure system.
    Zhou C; Huang M; Yu J; Li Y; Liu A
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8805-8813. PubMed ID: 28214934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lead uptake, toxicity, and detoxification in plants.
    Pourrut B; Shahid M; Dumat C; Winterton P; Pinelli E
    Rev Environ Contam Toxicol; 2011; 213():113-36. PubMed ID: 21541849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive review of recent research concerning the role of low molecular weight organic acids on the fate of organic pollutants in soil.
    Peña A
    J Hazard Mater; 2022 Jul; 434():128875. PubMed ID: 35429761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of organic acids on the bioavailability of selenium in soil: A review.
    Dinh QT; Li Z; Tran TAT; Wang D; Liang D
    Chemosphere; 2017 Oct; 184():618-635. PubMed ID: 28624740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulation of thiol contents in plants.
    Höfgen R; Kreft O; Willmitzer L; Hesse H
    Amino Acids; 2001; 20(3):291-9. PubMed ID: 11354605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review.
    Adrees M; Ali S; Rizwan M; Zia-Ur-Rehman M; Ibrahim M; Abbas F; Farid M; Qayyum MF; Irshad MK
    Ecotoxicol Environ Saf; 2015 Sep; 119():186-97. PubMed ID: 26004359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Fe plaque and organic acids on metal uptake by wetland plants under drained and waterlogged conditions.
    Li WC; Deng H; Wong MH
    Environ Pollut; 2017 Dec; 231(Pt 1):732-741. PubMed ID: 28858668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detoxifying the heavy metals: a multipronged study of tolerance strategies against heavy metals toxicity in plants.
    Ejaz U; Khan SM; Khalid N; Ahmad Z; Jehangir S; Fatima Rizvi Z; Lho LH; Han H; Raposo A
    Front Plant Sci; 2023; 14():1154571. PubMed ID: 37251771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals.
    Tak HI; Ahmad F; Babalola OO
    Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering the growth, organic acid exudations, and ionic homeostasis of Amaranthus viridis L. and Portulaca oleracea L. under lead chloride stress.
    Javed MT; Akram MS; Habib N; Tanwir K; Ali Q; Niazi NK; Gul H; Iqbal N
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2958-2971. PubMed ID: 29147985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.