BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 334722)

  • 1. Role of methionine in the synthesis of nucleoside Q in Escherichia coli transfer ribonucleic acid.
    Katze JR; Simonian MH; Mosteller RD
    J Bacteriol; 1977 Oct; 132(1):174-9. PubMed ID: 334722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of nucleoside Q formation in transfer ribonucleic acid during methionine starvation of relaxed-control Escherichia coli.
    Katze JR; Mosteller RD
    J Bacteriol; 1976 Jan; 125(1):205-10. PubMed ID: 1107305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of chromatographically unique species of transfer ribonucleic acid during amino acid starvation of relaxed-control Escherichia coli.
    Fournier MJ; Peterkofsky A
    J Bacteriol; 1975 May; 122(2):538-48. PubMed ID: 1092655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precursor relationship of phenylalanine transfer ribonucleic acid from Escherichia coli treated with chloramphenicol or starved for iron, methionine, or cysteine.
    Juarez H; Skjold AC; Hedgcoth C
    J Bacteriol; 1975 Jan; 121(1):44-54. PubMed ID: 46864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. General and specific effects of amino acid starvation on the formation of undermodified Escherichia coli phenylalanine tRNA.
    Fournier MJ; Webb E; Kitchingman GR
    Biochim Biophys Acta; 1976 Nov; 454(1):97-113. PubMed ID: 791374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unbalanced growth and the production of unique transfer ribonucleic acids in relaxed-control Escherichia coli.
    Kitchingman GR; Fournier MJ
    J Bacteriol; 1975 Dec; 124(3):1382-94. PubMed ID: 1104585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charging levels of four tRNA species in Escherichia coli Rel(+) and Rel(-) strains during amino acid starvation: a simple model for the effect of ppGpp on translational accuracy.
    Sørensen MA
    J Mol Biol; 2001 Mar; 307(3):785-98. PubMed ID: 11273701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of specific transfer ribonucleic acids during methionine starvation in Escherichia coli 113-3.
    Huang HH; Fenrych W; Pawelkiewicz J; Johnson BC
    J Mol Biol; 1971 Jul; 59(2):307-18. PubMed ID: 4935787
    [No Abstract]   [Full Text] [Related]  

  • 9. Ribonucleic acid synthesis and glutamate excretion in Escherichia coli.
    Broda P
    J Bacteriol; 1968 Nov; 96(5):1528-34. PubMed ID: 4973126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of nucleoside Q precursor in methyl-deficient E.coli tRNA.
    Okada N; Yasuda T; Nishimura S
    Nucleic Acids Res; 1977 Dec; 4(12):4063-75. PubMed ID: 341083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polysome stability in relaxed and stringent strain of Escherichia coli during amino acid starvation.
    Sells BH; Ennis HL
    J Bacteriol; 1970 Jun; 102(3):666-71. PubMed ID: 4914072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of 5-fluorouracil and 6-thioguanine incorporation on the amino acid acceptor activity of Escherichia coli tRNA.
    Gray PN; Rachmeller M
    Biochim Biophys Acta; 1967 Apr; 138(2):432-5. PubMed ID: 4860475
    [No Abstract]   [Full Text] [Related]  

  • 13. Modification-deficient transfer ribonucleic acids from relaxed control Escherichia coli: structures of the major undermodified phenylalanine and leucine transfer RNAs produced during leucine starvation.
    Kitchingman GR; Fournier MJ
    Biochemistry; 1977 May; 16(10):2213-20. PubMed ID: 324516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the modified nucleoside Q isolated from Escherichia coli transfer ribonucleic acid. 7-(4,5-cis-Dihydroxy-1-cyclopenten-3-ylaminomethyl)-7-deazaguanosine.
    Kasai H; Oashi Z; Harada F; Nishimura S; Oppenheimer NJ; Crain PF; Liehr JG; von Minden DL; McCloskey JA
    Biochemistry; 1975 Sep; 14(19):4198-208. PubMed ID: 1101947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The control of ribonucleic acid synthesis in bacteria. Fluctuations in messenger ribonucleic acid synthesis in cultures recovering from amino acid starvation.
    Midgley JE; Smith RJ
    Biochem J; 1974 Feb; 138(2):155-63. PubMed ID: 4595730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of aminoacyl-transfer ribonucleic acid in the regulation of ribonucleic acid synthesis in Escherichia coli.
    Morris DW; DeMoss JA
    J Bacteriol; 1965 Dec; 90(6):1624-31. PubMed ID: 5322722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The control of ribonucleic acid synthesis in bacteria. The synthesis and stbility of ribonucleic acid in rifampicin-inhibited cultures of Escherichia coli.
    Gray WJ; Midgley JE
    Biochem J; 1971 Apr; 122(2):161-9. PubMed ID: 4940607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continued expression of the ribonucleic acid control gene during inhibition of Escherichia coli ribonucleic acid and protein synthesis.
    Khan SR; Yamazaki H
    J Bacteriol; 1970 Jun; 102(3):702-10. PubMed ID: 4914075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure determination of a nucleoside Q precursor isolated from E. coli tRNA: 7-(aminomethyl)-7-deazaguanosine.
    Okada N; Noguchi S; Nishimura S; Ohgi T; Goto T; Crain PF; McCloskey JA
    Nucleic Acids Res; 1978 Jul; 5(7):2289-96. PubMed ID: 353740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyamines and the accumulation of ribonucleic acid in some polyauxotrophic strains of Escherichia coli.
    Raina A; Jansen M; Cohen SS
    J Bacteriol; 1967 Nov; 94(5):1684-96. PubMed ID: 4863983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.