These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 334722)
1. Role of methionine in the synthesis of nucleoside Q in Escherichia coli transfer ribonucleic acid. Katze JR; Simonian MH; Mosteller RD J Bacteriol; 1977 Oct; 132(1):174-9. PubMed ID: 334722 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of nucleoside Q formation in transfer ribonucleic acid during methionine starvation of relaxed-control Escherichia coli. Katze JR; Mosteller RD J Bacteriol; 1976 Jan; 125(1):205-10. PubMed ID: 1107305 [TBL] [Abstract][Full Text] [Related]
3. Formation of chromatographically unique species of transfer ribonucleic acid during amino acid starvation of relaxed-control Escherichia coli. Fournier MJ; Peterkofsky A J Bacteriol; 1975 May; 122(2):538-48. PubMed ID: 1092655 [TBL] [Abstract][Full Text] [Related]
4. Precursor relationship of phenylalanine transfer ribonucleic acid from Escherichia coli treated with chloramphenicol or starved for iron, methionine, or cysteine. Juarez H; Skjold AC; Hedgcoth C J Bacteriol; 1975 Jan; 121(1):44-54. PubMed ID: 46864 [TBL] [Abstract][Full Text] [Related]
5. General and specific effects of amino acid starvation on the formation of undermodified Escherichia coli phenylalanine tRNA. Fournier MJ; Webb E; Kitchingman GR Biochim Biophys Acta; 1976 Nov; 454(1):97-113. PubMed ID: 791374 [TBL] [Abstract][Full Text] [Related]
6. Unbalanced growth and the production of unique transfer ribonucleic acids in relaxed-control Escherichia coli. Kitchingman GR; Fournier MJ J Bacteriol; 1975 Dec; 124(3):1382-94. PubMed ID: 1104585 [TBL] [Abstract][Full Text] [Related]
7. Charging levels of four tRNA species in Escherichia coli Rel(+) and Rel(-) strains during amino acid starvation: a simple model for the effect of ppGpp on translational accuracy. Sørensen MA J Mol Biol; 2001 Mar; 307(3):785-98. PubMed ID: 11273701 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of specific transfer ribonucleic acids during methionine starvation in Escherichia coli 113-3. Huang HH; Fenrych W; Pawelkiewicz J; Johnson BC J Mol Biol; 1971 Jul; 59(2):307-18. PubMed ID: 4935787 [No Abstract] [Full Text] [Related]
9. Ribonucleic acid synthesis and glutamate excretion in Escherichia coli. Broda P J Bacteriol; 1968 Nov; 96(5):1528-34. PubMed ID: 4973126 [TBL] [Abstract][Full Text] [Related]
10. Detection of nucleoside Q precursor in methyl-deficient E.coli tRNA. Okada N; Yasuda T; Nishimura S Nucleic Acids Res; 1977 Dec; 4(12):4063-75. PubMed ID: 341083 [TBL] [Abstract][Full Text] [Related]
11. Polysome stability in relaxed and stringent strain of Escherichia coli during amino acid starvation. Sells BH; Ennis HL J Bacteriol; 1970 Jun; 102(3):666-71. PubMed ID: 4914072 [TBL] [Abstract][Full Text] [Related]
12. The effect of 5-fluorouracil and 6-thioguanine incorporation on the amino acid acceptor activity of Escherichia coli tRNA. Gray PN; Rachmeller M Biochim Biophys Acta; 1967 Apr; 138(2):432-5. PubMed ID: 4860475 [No Abstract] [Full Text] [Related]
13. Modification-deficient transfer ribonucleic acids from relaxed control Escherichia coli: structures of the major undermodified phenylalanine and leucine transfer RNAs produced during leucine starvation. Kitchingman GR; Fournier MJ Biochemistry; 1977 May; 16(10):2213-20. PubMed ID: 324516 [TBL] [Abstract][Full Text] [Related]
14. Structure of the modified nucleoside Q isolated from Escherichia coli transfer ribonucleic acid. 7-(4,5-cis-Dihydroxy-1-cyclopenten-3-ylaminomethyl)-7-deazaguanosine. Kasai H; Oashi Z; Harada F; Nishimura S; Oppenheimer NJ; Crain PF; Liehr JG; von Minden DL; McCloskey JA Biochemistry; 1975 Sep; 14(19):4198-208. PubMed ID: 1101947 [TBL] [Abstract][Full Text] [Related]
15. The control of ribonucleic acid synthesis in bacteria. Fluctuations in messenger ribonucleic acid synthesis in cultures recovering from amino acid starvation. Midgley JE; Smith RJ Biochem J; 1974 Feb; 138(2):155-63. PubMed ID: 4595730 [TBL] [Abstract][Full Text] [Related]
16. Role of aminoacyl-transfer ribonucleic acid in the regulation of ribonucleic acid synthesis in Escherichia coli. Morris DW; DeMoss JA J Bacteriol; 1965 Dec; 90(6):1624-31. PubMed ID: 5322722 [TBL] [Abstract][Full Text] [Related]
17. The control of ribonucleic acid synthesis in bacteria. The synthesis and stbility of ribonucleic acid in rifampicin-inhibited cultures of Escherichia coli. Gray WJ; Midgley JE Biochem J; 1971 Apr; 122(2):161-9. PubMed ID: 4940607 [TBL] [Abstract][Full Text] [Related]
18. Continued expression of the ribonucleic acid control gene during inhibition of Escherichia coli ribonucleic acid and protein synthesis. Khan SR; Yamazaki H J Bacteriol; 1970 Jun; 102(3):702-10. PubMed ID: 4914075 [TBL] [Abstract][Full Text] [Related]
19. Structure determination of a nucleoside Q precursor isolated from E. coli tRNA: 7-(aminomethyl)-7-deazaguanosine. Okada N; Noguchi S; Nishimura S; Ohgi T; Goto T; Crain PF; McCloskey JA Nucleic Acids Res; 1978 Jul; 5(7):2289-96. PubMed ID: 353740 [TBL] [Abstract][Full Text] [Related]
20. Polyamines and the accumulation of ribonucleic acid in some polyauxotrophic strains of Escherichia coli. Raina A; Jansen M; Cohen SS J Bacteriol; 1967 Nov; 94(5):1684-96. PubMed ID: 4863983 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]