These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 33472664)

  • 1. An efficient computational method for predicting drug-target interactions using weighted extreme learning machine and speed up robot features.
    An JY; Meng FR; Yan ZJ
    BioData Min; 2021 Jan; 14(1):3. PubMed ID: 33472664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ensemble Learning Prediction of Drug-Target Interactions Using GIST Descriptor Extracted from PSSM-Based Evolutionary Information.
    Zhan X; You Z; Yu C; Li L; Pan J
    Biomed Res Int; 2020; 2020():4516250. PubMed ID: 32908888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Ensemble Learning-Based Method for Inferring Drug-Target Interactions Combining Protein Sequences and Drug Fingerprints.
    Zhao ZY; Huang WZ; Zhan XK; Pan J; Huang YA; Zhang SW; Yu CQ
    Biomed Res Int; 2021; 2021():9933873. PubMed ID: 33987446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug-Target Interaction Prediction Based on Drug Fingerprint Information and Protein Sequence.
    Li Y; Huang YA; You ZH; Li LP; Wang Z
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31430892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico prediction of drug-target interaction networks based on drug chemical structure and protein sequences.
    Li Z; Han P; You ZH; Li X; Zhang Y; Yu H; Nie R; Chen X
    Sci Rep; 2017 Sep; 7(1):11174. PubMed ID: 28894115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Drug-Target Interactions by Combining Dual-Tree Complex Wavelet Transform with Ensemble Learning Method.
    Pan J; Li LP; You ZH; Yu CQ; Ren ZH; Chen Y
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational methods using weighed-extreme learning machine to predict protein self-interactions with protein evolutionary information.
    An JY; Zhang L; Zhou Y; Zhao YJ; Wang DF
    J Cheminform; 2017 Aug; 9(1):47. PubMed ID: 29086182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating chemical sub-structures and protein evolutionary information for inferring drug-target interactions.
    Wang L; You ZH; Li LP; Yan X; Zhang W
    Sci Rep; 2020 Apr; 10(1):6641. PubMed ID: 32313024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved prediction of drug-target interactions based on ensemble learning with fuzzy local ternary pattern.
    Zhao ZY; Huang WZ; Zhan XK; Huang YA; Zhang SW; Yu CQ
    Front Biosci (Landmark Ed); 2021 Jul; 26(7):222-234. PubMed ID: 34340269
    [No Abstract]   [Full Text] [Related]  

  • 10. Research on air pollutant concentration prediction method based on self-adaptive neuro-fuzzy weighted extreme learning machine.
    Li Y; Jiang P; She Q; Lin G
    Environ Pollut; 2018 Oct; 241():1115-1127. PubMed ID: 30029320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Drug-Target Interaction Networks from the Integration of Protein Sequences and Drug Chemical Structures.
    Meng FR; You ZH; Chen X; Zhou Y; An JY
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28678206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepStack-DTIs: Predicting Drug-Target Interactions Using LightGBM Feature Selection and Deep-Stacked Ensemble Classifier.
    Zhang Y; Jiang Z; Chen C; Wei Q; Gu H; Yu B
    Interdiscip Sci; 2022 Jun; 14(2):311-330. PubMed ID: 34731411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of potential drug-targets by combining evolutionary information extracted from frequency profiles and molecular topological structures.
    Wang L; You ZH; Li LP; Yan X; Zhang W; Song KJ; Song CD
    Chem Biol Drug Des; 2020 Aug; 96(2):758-767. PubMed ID: 31393672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RFDT: A Rotation Forest-based Predictor for Predicting Drug-Target Interactions Using Drug Structure and Protein Sequence Information.
    Wang L; You ZH; Chen X; Yan X; Liu G; Zhang W
    Curr Protein Pept Sci; 2018; 19(5):445-454. PubMed ID: 27842479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Weighted Extreme Learning Machine Combined With Scale-Invariant Feature Transform to Predict Protein-Protein Interactions From Protein Evolutionary Information.
    Li J; Shi X; You ZH; Yi HC; Chen Z; Lin Q; Fang M
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1546-1554. PubMed ID: 31940546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RoFDT: Identification of Drug-Target Interactions from Protein Sequence and Drug Molecular Structure Using Rotation Forest.
    Wang Y; Wang L; Wong L; Zhao B; Su X; Li Y; You Z
    Biology (Basel); 2022 May; 11(5):. PubMed ID: 35625469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Systematic Prediction of Drug-Target Interactions Using Molecular Fingerprints and Protein Sequences.
    Huang YA; You ZH; Chen X
    Curr Protein Pept Sci; 2018; 19(5):468-478. PubMed ID: 27875970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting drug-target interactions using Lasso with random forest based on evolutionary information and chemical structure.
    Shi H; Liu S; Chen J; Li X; Ma Q; Yu B
    Genomics; 2019 Dec; 111(6):1839-1852. PubMed ID: 30550813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNN-DTIs: Improved drug-target interactions prediction using XGBoost feature selection and deep neural network.
    Chen C; Shi H; Jiang Z; Salhi A; Chen R; Cui X; Yu B
    Comput Biol Med; 2021 Sep; 136():104676. PubMed ID: 34375902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.