These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 33473293)
1. Kinetics of α‑dicarbonyl compounds formation in glucose-glutamic acid model of Maillard reaction. Zhang L; Sun Y; Pu D; Zhang Y; Sun B; Zhao Z Food Sci Nutr; 2021 Jan; 9(1):290-302. PubMed ID: 33473293 [TBL] [Abstract][Full Text] [Related]
2. Multiresponse kinetic modelling of Maillard reaction and caramelisation in a heated glucose/wheat flour system. Kocadağlı T; Gökmen V Food Chem; 2016 Nov; 211():892-902. PubMed ID: 27283710 [TBL] [Abstract][Full Text] [Related]
3. Effect of Sodium Chloride on α-Dicarbonyl Compound and 5-Hydroxymethyl-2-furfural Formations from Glucose under Caramelization Conditions: A Multiresponse Kinetic Modeling Approach. Kocadağlı T; Gökmen V J Agric Food Chem; 2016 Aug; 64(32):6333-42. PubMed ID: 27477785 [TBL] [Abstract][Full Text] [Related]
4. Maillard reaction and caramelization during hazelnut roasting: A multiresponse kinetic study. Göncüoğlu Taş N; Gökmen V Food Chem; 2017 Apr; 221():1911-1922. PubMed ID: 27979180 [TBL] [Abstract][Full Text] [Related]
5. Studies on the Formation of Maillard and Caramelization Products from Glucosamine Incubated at 37 °C. Hrynets Y; Ndagijimana M; Betti M J Agric Food Chem; 2015 Jul; 63(27):6249-61. PubMed ID: 26114422 [TBL] [Abstract][Full Text] [Related]
6. Identification and determination of alpha-dicarbonyl compounds formed in the degradation of sugars. Usui T; Yanagisawa S; Ohguchi M; Yoshino M; Kawabata R; Kishimoto J; Arai Y; Aida K; Watanabe H; Hayase F Biosci Biotechnol Biochem; 2007 Oct; 71(10):2465-72. PubMed ID: 17928698 [TBL] [Abstract][Full Text] [Related]
7. Identification and quantification of six major α-dicarbonyl process contaminants in high-fructose corn syrup. Gensberger S; Mittelmaier S; Glomb MA; Pischetsrieder M Anal Bioanal Chem; 2012 Jul; 403(10):2923-31. PubMed ID: 22382856 [TBL] [Abstract][Full Text] [Related]
8. Fasting Concentrations and Postprandial Response of 1,2-Dicarbonyl Compounds 3-Deoxyglucosone, Glyoxal, and Methylglyoxal Are Not Increased in Healthy Older Adults. Herpich C; Kochlik B; Weber D; Ott C; Grune T; Norman K; Raupbach J J Gerontol A Biol Sci Med Sci; 2022 May; 77(5):934-940. PubMed ID: 34726231 [TBL] [Abstract][Full Text] [Related]
9. Degradation of glucose: reinvestigation of reactive alpha-Dicarbonyl compounds. Gobert J; Glomb MA J Agric Food Chem; 2009 Sep; 57(18):8591-7. PubMed ID: 19711949 [TBL] [Abstract][Full Text] [Related]
10. Contents of ɑ-dicarbonyl compounds in commercial black tea and affected by the processing. Zhu H; Niu L; Zhu L; Yuan H; Kilmartin PA; Jiang Y Food Res Int; 2024 Feb; 178():113876. PubMed ID: 38309897 [TBL] [Abstract][Full Text] [Related]
11. 2-Deoxyglucosone: A New C Bruhns P; Kaufmann M; Koch T; Kroh LW J Agric Food Chem; 2018 Nov; 66(44):11806-11811. PubMed ID: 30336014 [TBL] [Abstract][Full Text] [Related]
12. Detection of acacia honey adulteration with high fructose corn syrup through determination of targeted α‑Dicarbonyl compound using ion mobility-mass spectrometry coupled with UHPLC-MS/MS. Yan S; Song M; Wang K; Fang X; Peng W; Wu L; Xue X Food Chem; 2021 Aug; 352():129312. PubMed ID: 33652193 [TBL] [Abstract][Full Text] [Related]
13. Qualitative and Quantitative Profiling of Fructose Degradation Products Revealed the Formation of Thirteen Reactive Carbonyl Compounds and Higher Reactivity Compared to Glucose. Ohno R; Auditore A; Gensberger-Reigl S; Saller J; Stützer J; Weigel I; Pischetsrieder M J Agric Food Chem; 2024 Aug; 72(34):19131-19142. PubMed ID: 39145730 [TBL] [Abstract][Full Text] [Related]
14. Extending the spectrum of α-dicarbonyl compounds in vivo. Henning C; Liehr K; Girndt M; Ulrich C; Glomb MA J Biol Chem; 2014 Oct; 289(41):28676-88. PubMed ID: 25164824 [TBL] [Abstract][Full Text] [Related]
15. Investigations on the Maillard Reaction in Sesame ( Sesamum indicum L.) Seeds Induced by Roasting. Berk E; Hamzalıoğlu A; Gökmen V J Agric Food Chem; 2019 May; 67(17):4923-4930. PubMed ID: 30969769 [TBL] [Abstract][Full Text] [Related]
16. Structure- and concentration-specific assessment of the physiological reactivity of α-dicarbonyl glucose degradation products in peritoneal dialysis fluids. Distler L; Georgieva A; Kenkel I; Huppert J; Pischetsrieder M Chem Res Toxicol; 2014 Aug; 27(8):1421-30. PubMed ID: 25033248 [TBL] [Abstract][Full Text] [Related]
17. Effects of Sodium Chloride, Potassium Chloride, and Calcium Chloride on the Formation of α-Dicarbonyl Compounds and Furfurals and the Development of Browning in Cookies during Baking. Kocadağlı T; Gökmen V J Agric Food Chem; 2016 Oct; 64(41):7838-7848. PubMed ID: 27690415 [TBL] [Abstract][Full Text] [Related]
18. Multiresponse kinetic modelling of α-dicarbonyl compounds formation in fruit juices during storage. Gürsul Aktağ I; Gökmen V Food Chem; 2020 Aug; 320():126620. PubMed ID: 32203837 [TBL] [Abstract][Full Text] [Related]
19. 3-deoxygalactosone, a "new" 1,2-dicarbonyl compound in milk products. Hellwig M; Degen J; Henle T J Agric Food Chem; 2010 Oct; 58(19):10752-60. PubMed ID: 20822095 [TBL] [Abstract][Full Text] [Related]
20. Investigation of α-dicarbonyl compounds in baby foods by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. Kocadağlı T; Gökmen V J Agric Food Chem; 2014 Aug; 62(31):7714-20. PubMed ID: 25046423 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]