These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 33474511)
21. Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Chang Q; Diao FW; Wang QF; Pan L; Dang ZH; Guo W Environ Pollut; 2018 Oct; 241():607-615. PubMed ID: 29886381 [TBL] [Abstract][Full Text] [Related]
22. Effect of Root Colonization by Arbuscular Mycorrhizal Fungi on Growth, Productivity and Blast Resistance in Rice. Campo S; Martín-Cardoso H; Olivé M; Pla E; Catala-Forner M; Martínez-Eixarch M; San Segundo B Rice (N Y); 2020 Jun; 13(1):42. PubMed ID: 32572623 [TBL] [Abstract][Full Text] [Related]
23. Arbuscular mycorrhizal fungi and foliar phosphorus inorganic supply alleviate salt stress effects in physiological attributes, but only arbuscular mycorrhizal fungi increase biomass in woody species of a semiarid environment. Frosi G; Barros VA; Oliveira MT; Santos M; Ramos DG; Maia LC; Santos MG Tree Physiol; 2018 Jan; 38(1):25-36. PubMed ID: 28981870 [TBL] [Abstract][Full Text] [Related]
24. Polyphosphate dynamics in mycorrhizal roots during colonization of an arbuscular mycorrhizal fungus. Ohtomo R; Saito M New Phytol; 2005 Aug; 167(2):571-8. PubMed ID: 15998407 [TBL] [Abstract][Full Text] [Related]
25. Arbuscular Mycorrhizal Fungi Increase Pb Uptake of Colonized and Non-Colonized Zhang H; Ren W; Zheng Y; Li Y; Zhu M; Tang M Microorganisms; 2021 Jun; 9(6):. PubMed ID: 34199397 [TBL] [Abstract][Full Text] [Related]
26. Dioxins/furans disturb the life cycle of the arbuscular mycorrhizal fungus, Meglouli H; Fontaine J; Lounès-Hadj Sahraoui A Int J Phytoremediation; 2020; 22(14):1497-1504. PubMed ID: 32634318 [TBL] [Abstract][Full Text] [Related]
27. Mycorrhizal Symbiotic Efficiency on C3 and C4 Plants under Salinity Stress - A Meta-Analysis. Chandrasekaran M; Kim K; Krishnamoorthy R; Walitang D; Sundaram S; Joe MM; Selvakumar G; Hu S; Oh SH; Sa T Front Microbiol; 2016; 7():1246. PubMed ID: 27563299 [TBL] [Abstract][Full Text] [Related]
28. The Metabolic Profile of Tsiokanos E; Cartabia A; Tsafantakis N; Lalaymia I; Termentzi A; Miguel M; Declerck S; Fokialakis N Metabolites; 2022 Jun; 12(7):. PubMed ID: 35888697 [No Abstract] [Full Text] [Related]
29. Mycorrhizal status and host genotype interact to shape plant nutrition in field grown maize (Zea mays ssp. mays). Li M; Perez-Limón S; Ramírez-Flores MR; Barrales-Gamez B; Meraz-Mercado MA; Ziegler G; Baxter I; Olalde-Portugal V; Sawers RJH Mycorrhiza; 2023 Nov; 33(5-6):345-358. PubMed ID: 37851276 [TBL] [Abstract][Full Text] [Related]
30. Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis. Tamayo E; Gómez-Gallego T; Azcón-Aguilar C; Ferrol N Front Plant Sci; 2014; 5():547. PubMed ID: 25352857 [TBL] [Abstract][Full Text] [Related]
31. Management of chromium(VI)-contaminated soils through synergistic application of vermicompost, chromate reducing rhizobacteria and Arbuscular mycorrhizal fungi (AMF) reduced plant toxicity and improved yield attributes in Ocimum basilicum L. Soni SK; Singh R; Tiwari S Arch Microbiol; 2022 Sep; 204(10):614. PubMed ID: 36088522 [TBL] [Abstract][Full Text] [Related]
32. AMF species do matter: Deja-Sikora E; Werner K; Hrynkiewicz K Front Microbiol; 2023; 14():1127278. PubMed ID: 37138600 [TBL] [Abstract][Full Text] [Related]
33. Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils. Willmann M; Gerlach N; Buer B; Polatajko A; Nagy R; Koebke E; Jansa J; Flisch R; Bucher M Front Plant Sci; 2013; 4():533. PubMed ID: 24409191 [TBL] [Abstract][Full Text] [Related]
34. An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis. Gerlach N; Schmitz J; Polatajko A; Schlüter U; Fahnenstich H; Witt S; Fernie AR; Uroic K; Scholz U; Sonnewald U; Bucher M Plant Cell Environ; 2015 Aug; 38(8):1591-612. PubMed ID: 25630535 [TBL] [Abstract][Full Text] [Related]
35. Spatial soil heterogeneity has a greater effect on symbiotic arbuscular mycorrhizal fungal communities and plant growth than genetic modification with Bacillus thuringiensis toxin genes. Cheeke TE; Schütte UM; Hemmerich CM; Cruzan MB; Rosenstiel TN; Bever JD Mol Ecol; 2015 May; 24(10):2580-93. PubMed ID: 25827202 [TBL] [Abstract][Full Text] [Related]
36. Effect of an arbuscular mycorrhizal fungus on maize growth and cadmium migration in a sand column. Yu Z; Zhao X; Su L; Yan K; Li B; He Y; Zhan F Ecotoxicol Environ Saf; 2021 Dec; 225():112782. PubMed ID: 34536792 [TBL] [Abstract][Full Text] [Related]
37. The Phosphate Inhibition Paradigm: Host and Fungal Genotypes Determine Arbuscular Mycorrhizal Fungal Colonization and Responsiveness to Inoculation in Cassava With Increasing Phosphorus Supply. Peña Venegas RA; Lee SJ; Thuita M; Mlay DP; Masso C; Vanlauwe B; Rodriguez A; Sanders IR Front Plant Sci; 2021; 12():693037. PubMed ID: 34239529 [TBL] [Abstract][Full Text] [Related]
38. The arbuscular mycorrhizal fungus Rhizophagus irregularis harmonizes nuclear dynamics in the presence of distinct abiotic factors. Cornell C; Kokkoris V; Turcu B; Dettman J; Stefani F; Corradi N Fungal Genet Biol; 2022 Jan; 158():103639. PubMed ID: 34800644 [TBL] [Abstract][Full Text] [Related]
39. Arbuscular mycorrhizal fungi enhance phosphate uptake and alter bacterial communities in maize rhizosphere soil. Lu Y; Yan Y; Qin J; Ou L; Yang X; Liu F; Xu Y Front Plant Sci; 2023; 14():1206870. PubMed ID: 37426987 [TBL] [Abstract][Full Text] [Related]
40. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Feng G; Zhang FS; Li XL; Tian CY; Tang C; Rengel Z Mycorrhiza; 2002 Aug; 12(4):185-90. PubMed ID: 12189473 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]