BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 33475085)

  • 1. Identification of PARP-7 substrates reveals a role for MARylation in microtubule control in ovarian cancer cells.
    Palavalli Parsons LH; Challa S; Gibson BA; Nandu T; Stokes MS; Huang D; Lea JS; Kraus WL
    Elife; 2021 Jan; 10():. PubMed ID: 33475085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical genetics and proteome-wide site mapping reveal cysteine MARylation by PARP-7 on immune-relevant protein targets.
    Rodriguez KM; Buch-Larsen SC; Kirby IT; Siordia IR; Hutin D; Rasmussen M; Grant DM; David LL; Matthews J; Nielsen ML; Cohen MS
    Elife; 2021 Jan; 10():. PubMed ID: 33475084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosome ADP-ribosylation inhibits translation and maintains proteostasis in cancers.
    Challa S; Khulpateea BR; Nandu T; Camacho CV; Ryu KW; Chen H; Peng Y; Lea JS; Kraus WL
    Cell; 2021 Aug; 184(17):4531-4546.e26. PubMed ID: 34314702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Protein Substrates of Specific PARP Enzymes Using Analog-Sensitive PARP Mutants and a "Clickable" NAD
    Gibson BA; Kraus WL
    Methods Mol Biol; 2017; 1608():111-135. PubMed ID: 28695507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PARP7 mono-ADP-ribosylates the agonist conformation of the androgen receptor in the nucleus.
    Kamata T; Yang CS; Paschal BM
    Biochem J; 2021 Aug; 478(15):2999-3014. PubMed ID: 34264286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-Transcriptional Regulation of PARP7 Protein Stability Is Controlled by Androgen Signaling.
    Kamata T; Yang CS; Melhuish TA; Frierson HF; Wotton D; Paschal BM
    Cells; 2021 Feb; 10(2):. PubMed ID: 33572475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying Genomic Sites of ADP-Ribosylation Mediated by Specific Nuclear PARP Enzymes Using Click-ChIP.
    Rogge RA; Gibson BA; Kraus WL
    Methods Mol Biol; 2018; 1813():371-387. PubMed ID: 30097881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PARP7 and Mono-ADP-Ribosylation Negatively Regulate Estrogen Receptor α Signaling in Human Breast Cancer Cells.
    Rasmussen M; Tan S; Somisetty VS; Hutin D; Olafsen NE; Moen A; Anonsen JH; Grant DM; Matthews J
    Cells; 2021 Mar; 10(3):. PubMed ID: 33799807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enabling drug discovery for the PARP protein family through the detection of mono-ADP-ribosylation.
    Lu AZ; Abo R; Ren Y; Gui B; Mo JR; Blackwell D; Wigle T; Keilhack H; Niepel M
    Biochem Pharmacol; 2019 Sep; 167():97-106. PubMed ID: 31075269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining Chemical Genetics with Proximity-Dependent Labeling Reveals Cellular Targets of Poly(ADP-ribose) Polymerase 14 (PARP14).
    Carter-O'Connell I; Vermehren-Schmaedick A; Jin H; Morgan RK; David LL; Cohen MS
    ACS Chem Biol; 2018 Oct; 13(10):2841-2848. PubMed ID: 30247868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PARP7-mediated ADP-ribosylation of FRA1 promotes cancer cell growth by repressing IRF1- and IRF3-dependent apoptosis.
    Manetsch P; Böhi F; Nowak K; Leslie Pedrioli DM; Hottiger MO
    Proc Natl Acad Sci U S A; 2023 Dec; 120(49):e2309047120. PubMed ID: 38011562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation.
    Gibson BA; Zhang Y; Jiang H; Hussey KM; Shrimp JH; Lin H; Schwede F; Yu Y; Kraus WL
    Science; 2016 Jul; 353(6294):45-50. PubMed ID: 27256882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generating Protein-Linked and Protein-Free Mono-, Oligo-, and Poly(ADP-Ribose) In Vitro.
    Lin KY; Huang D; Kraus WL
    Methods Mol Biol; 2018; 1813():91-108. PubMed ID: 30097863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADP
    Bian C; Zhang C; Luo T; Vyas A; Chen SH; Liu C; Kassab MA; Yang Y; Kong M; Yu X
    Nat Commun; 2019 Feb; 10(1):693. PubMed ID: 30741937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TCDD-inducible poly-ADP-ribose polymerase (TIPARP/PARP7) mono-ADP-ribosylates and co-activates liver X receptors.
    Bindesbøll C; Tan S; Bott D; Cho T; Tamblyn L; MacPherson L; Grønning-Wang L; Nebb HI; Matthews J
    Biochem J; 2016 Apr; 473(7):899-910. PubMed ID: 26814197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PARPs and ADP-ribosylation in RNA biology: from RNA expression and processing to protein translation and proteostasis.
    Kim DS; Challa S; Jones A; Kraus WL
    Genes Dev; 2020 Mar; 34(5-6):302-320. PubMed ID: 32029452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ADP-ribosylation and intracellular traffic: an emerging role for PARP enzymes.
    Grimaldi G; Corda D
    Biochem Soc Trans; 2019 Feb; 47(1):357-370. PubMed ID: 30710058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ADP-Ribosylation Levels and Patterns Correlate with Gene Expression and Clinical Outcomes in Ovarian Cancers.
    Conrad LB; Lin KY; Nandu T; Gibson BA; Lea JS; Kraus WL
    Mol Cancer Ther; 2020 Jan; 19(1):282-291. PubMed ID: 31594824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-specific analysis of the Asp- and Glu-ADP-ribosylated proteome by quantitative mass spectrometry.
    Li P; Zhen Y; Yu Y
    Methods Enzymol; 2019; 626():301-321. PubMed ID: 31606080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of TCDD-inducible poly-ADP-ribose polymerase (TIPARP/ARTD14) catalytic activity.
    Gomez A; Bindesbøll C; Satheesh SV; Grimaldi G; Hutin D; MacPherson L; Ahmed S; Tamblyn L; Cho T; Nebb HI; Moen A; Anonsen JH; Grant DM; Matthews J
    Biochem J; 2018 Dec; 475(23):3827-3846. PubMed ID: 30373764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.