These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. In situ NMR metrology reveals reaction mechanisms in redox flow batteries. Zhao EW; Liu T; Jónsson E; Lee J; Temprano I; Jethwa RB; Wang A; Smith H; Carretero-González J; Song Q; Grey CP Nature; 2020 Mar; 579(7798):224-228. PubMed ID: 32123353 [TBL] [Abstract][Full Text] [Related]
3. In situ electrochemical recomposition of decomposed redox-active species in aqueous organic flow batteries. Jing Y; Zhao EW; Goulet MA; Bahari M; Fell EM; Jin S; Davoodi A; Jónsson E; Wu M; Grey CP; Gordon RG; Aziz MJ Nat Chem; 2022 Oct; 14(10):1103-1109. PubMed ID: 35710986 [TBL] [Abstract][Full Text] [Related]
4. 200-Fold Lifetime Extension of 2,6- Dihydroxyanthraquinone Electrolyte during Flow Battery Operation. Bahari M; Jing Y; Jin S; Goulet MA; Tsukamoto T; Gordon RG; Aziz MJ ACS Appl Mater Interfaces; 2024 Oct; 16(39):52144-52152. PubMed ID: 39314015 [TBL] [Abstract][Full Text] [Related]
5. Enzyme-Inspired Formulation of the Electrolyte for Stable and Efficient Vanadium Redox Flow Batteries at High Temperatures. Abbas S; Hwang J; Kim H; Chae SA; Kim JW; Mehboob S; Ahn A; Han OH; Ha HY ACS Appl Mater Interfaces; 2019 Jul; 11(30):26842-26853. PubMed ID: 31268664 [TBL] [Abstract][Full Text] [Related]
6. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery. Duan W; Vemuri RS; Hu D; Yang Z; Wei X J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287515 [TBL] [Abstract][Full Text] [Related]
7. Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery. Wei X; Xu W; Huang J; Zhang L; Walter E; Lawrence C; Vijayakumar M; Henderson WA; Liu T; Cosimbescu L; Li B; Sprenkle V; Wang W Angew Chem Int Ed Engl; 2015 Jul; 54(30):8684-7. PubMed ID: 25891480 [TBL] [Abstract][Full Text] [Related]
8. Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review. Skyllas-Kazacos M; Cao L; Kazacos M; Kausar N; Mousa A ChemSusChem; 2016 Jul; 9(13):1521-43. PubMed ID: 27295523 [TBL] [Abstract][Full Text] [Related]
9. Capacity Decay Mitigation by Asymmetric Positive/Negative Electrolyte Volumes in Vanadium Redox Flow Batteries. Park JH; Park JJ; Park OO; Yang JH ChemSusChem; 2016 Nov; 9(22):3181-3187. PubMed ID: 27767257 [TBL] [Abstract][Full Text] [Related]
10. Exploring the Landscape of Heterocyclic Quinones for Redox Flow Batteries. Jethwa RB; Hey D; Kerber RN; Bond AD; Wright DS; Grey CP ACS Appl Energy Mater; 2024 Jan; 7(2):414-426. PubMed ID: 38273966 [TBL] [Abstract][Full Text] [Related]
11. Cyclic synthesis of lignin anthraquinone electrolytes for aqueous redox flow batteries. Jiao L; Sun M; Yang J; Yang W; Dai H Int J Biol Macromol; 2023 Feb; 229():236-246. PubMed ID: 36572085 [TBL] [Abstract][Full Text] [Related]