These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33475344)

  • 1. Coupled
    Zhao EW; Jónsson E; Jethwa RB; Hey D; Lyu D; Brookfield A; Klusener PAA; Collison D; Grey CP
    J Am Chem Soc; 2021 Feb; 143(4):1885-1895. PubMed ID: 33475344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ NMR metrology reveals reaction mechanisms in redox flow batteries.
    Zhao EW; Liu T; Jónsson E; Lee J; Temprano I; Jethwa RB; Wang A; Smith H; Carretero-González J; Song Q; Grey CP
    Nature; 2020 Mar; 579(7798):224-228. PubMed ID: 32123353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ electrochemical recomposition of decomposed redox-active species in aqueous organic flow batteries.
    Jing Y; Zhao EW; Goulet MA; Bahari M; Fell EM; Jin S; Davoodi A; Jónsson E; Wu M; Grey CP; Gordon RG; Aziz MJ
    Nat Chem; 2022 Oct; 14(10):1103-1109. PubMed ID: 35710986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 200-Fold Lifetime Extension of 2,6- Dihydroxyanthraquinone Electrolyte during Flow Battery Operation.
    Bahari M; Jing Y; Jin S; Goulet MA; Tsukamoto T; Gordon RG; Aziz MJ
    ACS Appl Mater Interfaces; 2024 Oct; 16(39):52144-52152. PubMed ID: 39314015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme-Inspired Formulation of the Electrolyte for Stable and Efficient Vanadium Redox Flow Batteries at High Temperatures.
    Abbas S; Hwang J; Kim H; Chae SA; Kim JW; Mehboob S; Ahn A; Han OH; Ha HY
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26842-26853. PubMed ID: 31268664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery.
    Duan W; Vemuri RS; Hu D; Yang Z; Wei X
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery.
    Wei X; Xu W; Huang J; Zhang L; Walter E; Lawrence C; Vijayakumar M; Henderson WA; Liu T; Cosimbescu L; Li B; Sprenkle V; Wang W
    Angew Chem Int Ed Engl; 2015 Jul; 54(30):8684-7. PubMed ID: 25891480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review.
    Skyllas-Kazacos M; Cao L; Kazacos M; Kausar N; Mousa A
    ChemSusChem; 2016 Jul; 9(13):1521-43. PubMed ID: 27295523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capacity Decay Mitigation by Asymmetric Positive/Negative Electrolyte Volumes in Vanadium Redox Flow Batteries.
    Park JH; Park JJ; Park OO; Yang JH
    ChemSusChem; 2016 Nov; 9(22):3181-3187. PubMed ID: 27767257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the Landscape of Heterocyclic Quinones for Redox Flow Batteries.
    Jethwa RB; Hey D; Kerber RN; Bond AD; Wright DS; Grey CP
    ACS Appl Energy Mater; 2024 Jan; 7(2):414-426. PubMed ID: 38273966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic synthesis of lignin anthraquinone electrolytes for aqueous redox flow batteries.
    Jiao L; Sun M; Yang J; Yang W; Dai H
    Int J Biol Macromol; 2023 Feb; 229():236-246. PubMed ID: 36572085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding capacity fade in organic redox-flow batteries by combining spectroscopy with statistical inference techniques.
    Modak SV; Shen W; Singh S; Herrera D; Oudeif F; Goldsmith BR; Huan X; Kwabi DG
    Nat Commun; 2023 Jun; 14(1):3602. PubMed ID: 37328467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular engineering of dihydroxyanthraquinone-based electrolytes for high-capacity aqueous organic redox flow batteries.
    Huang S; Zhang H; Salla M; Zhuang J; Zhi Y; Wang X; Wang Q
    Nat Commun; 2022 Aug; 13(1):4746. PubMed ID: 35961966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triarylamines as Catholytes in Aqueous Organic Redox Flow Batteries.
    Farag NL; Jethwa RB; Beardmore AE; Insinna T; O'Keefe CA; Klusener PAA; Grey CP; Wright DS
    ChemSusChem; 2023 Jul; 16(13):e202300128. PubMed ID: 36970847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge-Dependent Crossover in Aqueous Organic Redox Flow Batteries Revealed Using Online NMR Spectroscopy.
    Latchem EJ; Kress T; Klusener PAA; Kumar RV; Forse AC
    J Phys Chem Lett; 2024 Feb; 15(5):1515-1520. PubMed ID: 38299498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Operando benchtop NMR reveals reaction intermediates and crossover in redox flow batteries.
    Wu B; Aspers RLEG; Kentgens APM; Zhao EW
    J Magn Reson; 2023 Jun; 351():107448. PubMed ID: 37099853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.
    Blanc F; Leskes M; Grey CP
    Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure.
    Borodin O; Ren X; Vatamanu J; von Wald Cresce A; Knap J; Xu K
    Acc Chem Res; 2017 Dec; 50(12):2886-2894. PubMed ID: 29164857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-field EPR spectroscopy applied to biological systems: characterization of molecular switches for electron and ion transfer.
    Möbius K; Savitsky A; Schnegg A; Plato M; Fuchst M
    Phys Chem Chem Phys; 2005 Jan; 7(1):19-42. PubMed ID: 19785170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-field pulsed EPR spectroscopy for the speciation of the reduced [PV(2)Mo(10)O(40)](6-) polyoxometalate catalyst used in electron-transfer oxidations.
    Kaminker I; Goldberg H; Neumann R; Goldfarb D
    Chemistry; 2010 Sep; 16(33):10014-20. PubMed ID: 20645349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.