These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 33475355)

  • 1. Tertiary RNA Folding-Targeted Drug Screening Strategy Using a Protein Nanopore.
    Lee DH; Oh S; Lim K; Lee B; Yi GS; Kim YR; Kim KB; Lee CK; Chi SW; Lee MK
    Anal Chem; 2021 Feb; 93(5):2811-2819. PubMed ID: 33475355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids.
    Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A
    Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time label-free detection of dynamic aptamer-small molecule interactions using a nanopore nucleic acid conformational sensor.
    Chingarande RG; Tian K; Kuang Y; Sarangee A; Hou C; Ma E; Ren J; Hawkins S; Kim J; Adelstein R; Chen S; Gillis KD; Gu LQ
    Proc Natl Acad Sci U S A; 2023 Jun; 120(24):e2108118120. PubMed ID: 37276386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein sensing with engineered protein nanopores.
    Mohammad MM; Movileanu L
    Methods Mol Biol; 2012; 870():21-37. PubMed ID: 22528256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of a FRET Pair into a Riboswitch RNA to Measure Mg
    Xue Y; Liu Y
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-molecule fingerprinting of protein-drug interaction using a funneled biological nanopore.
    Jeong KB; Ryu M; Kim JS; Kim M; Yoo J; Chung M; Oh S; Jo G; Lee SG; Kim HM; Lee MK; Chi SW
    Nat Commun; 2023 Apr; 14(1):1461. PubMed ID: 37015934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain.
    Noeske J; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(15):5262-73. PubMed ID: 17686787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unfolding and Translocation of Proteins Through an Alpha-Hemolysin Nanopore by ClpXP.
    Nivala J; Mulroney L; Luan Q; Abu-Shumays R; Akeson M
    Methods Mol Biol; 2021; 2186():145-155. PubMed ID: 32918735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A universal strategy for aptamer-based nanopore sensing through host-guest interactions inside α-hemolysin.
    Li T; Liu L; Li Y; Xie J; Wu HC
    Angew Chem Int Ed Engl; 2015 Jun; 54(26):7568-71. PubMed ID: 25966821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using simulations and kinetic network models to reveal the dynamics and functions of riboswitches.
    Lin JC; Yoon J; Hyeon C; Thirumalai D
    Methods Enzymol; 2015; 553():235-58. PubMed ID: 25726468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.
    Cao C; Long YT
    Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring of an ATP-binding aptamer and its conformational changes using an α-hemolysin nanopore.
    Ying YL; Wang HY; Sutherland TC; Long YT
    Small; 2011 Jan; 7(1):87-94. PubMed ID: 21086519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-molecule FRET studies on the cotranscriptional folding of a thiamine pyrophosphate riboswitch.
    Uhm H; Kang W; Ha KS; Kang C; Hohng S
    Proc Natl Acad Sci U S A; 2018 Jan; 115(2):331-336. PubMed ID: 29279370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translocation intermediates of ubiquitin through an α-hemolysin nanopore: implications for detection of post-translational modifications.
    Bonome EL; Cecconi F; Chinappi M
    Nanoscale; 2019 May; 11(20):9920-9930. PubMed ID: 31069350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Individual RNA base recognition in immobilized oligonucleotides using a protein nanopore.
    Ayub M; Bayley H
    Nano Lett; 2012 Nov; 12(11):5637-43. PubMed ID: 23043363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the Small-Molecule Inhibition of an Anticancer Therapeutic Protein-Protein Interaction Using a Solid-State Nanopore.
    Kwak DK; Chae H; Lee MK; Ha JH; Goyal G; Kim MJ; Kim KB; Chi SW
    Angew Chem Int Ed Engl; 2016 May; 55(19):5713-7. PubMed ID: 27038437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Molecule-Based Detection of Conserved Influenza A Virus RNA Promoter Using a Protein Nanopore.
    Oh S; Lee MK; Chi SW
    ACS Sens; 2019 Nov; 4(11):2849-2853. PubMed ID: 31689087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evolving tale of two interacting RNAs-themes and variations of the T-box riboswitch mechanism.
    Suddala KC; Zhang J
    IUBMB Life; 2019 Aug; 71(8):1167-1180. PubMed ID: 31206978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanopore Sensing of Protein Folding.
    Si W; Aksimentiev A
    ACS Nano; 2017 Jul; 11(7):7091-7100. PubMed ID: 28693322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.