BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 33475456)

  • 1. Maf1 limits RNA polymerase III-directed transcription to preserve genomic integrity and extend lifespan.
    Noguchi C; Wang L; Shetty M; Mell JC; Sell C; Noguchi E
    Cell Cycle; 2021 Feb; 20(3):247-255. PubMed ID: 33475456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maf1-dependent transcriptional regulation of tRNAs prevents genomic instability and is associated with extended lifespan.
    Shetty M; Noguchi C; Wilson S; Martinez E; Shiozaki K; Sell C; Mell JC; Noguchi E
    Aging Cell; 2020 Feb; 19(2):e13068. PubMed ID: 31833215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells.
    Shor B; Wu J; Shakey Q; Toral-Barza L; Shi C; Follettie M; Yu K
    J Biol Chem; 2010 May; 285(20):15380-15392. PubMed ID: 20233713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1.
    Kantidakis T; Ramsbottom BA; Birch JL; Dowding SN; White RJ
    Proc Natl Acad Sci U S A; 2010 Jun; 107(26):11823-8. PubMed ID: 20543138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA Polymerase III Output Is Functionally Linked to tRNA Dimethyl-G26 Modification.
    Arimbasseri AG; Blewett NH; Iben JR; Lamichhane TN; Cherkasova V; Hafner M; Maraia RJ
    PLoS Genet; 2015 Dec; 11(12):e1005671. PubMed ID: 26720005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Casein kinase II-mediated phosphorylation of general repressor Maf1 triggers RNA polymerase III activation.
    Graczyk D; Debski J; Muszyńska G; Bretner M; Lefebvre O; Boguta M
    Proc Natl Acad Sci U S A; 2011 Mar; 108(12):4926-31. PubMed ID: 21383183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human MAF1 targets and represses active RNA polymerase III genes by preventing recruitment rather than inducing long-term transcriptional arrest.
    Orioli A; Praz V; Lhôte P; Hernandez N
    Genome Res; 2016 May; 26(5):624-35. PubMed ID: 26941251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of RNA polymerase III transcription from the glycerol-repressed state: revisiting the role of protein kinase CK2 in Maf1 phosphoregulation.
    Moir RD; Lee J; Willis IM
    J Biol Chem; 2012 Aug; 287(36):30833-41. PubMed ID: 22810236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two steps in Maf1-dependent repression of transcription by RNA polymerase III.
    Desai N; Lee J; Upadhya R; Chu Y; Moir RD; Willis IM
    J Biol Chem; 2005 Feb; 280(8):6455-62. PubMed ID: 15590667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress resistance and lifespan are increased in C. elegans but decreased in S. cerevisiae by mafr-1/maf1 deletion.
    Cai Y; Wei YH
    Oncotarget; 2016 Mar; 7(10):10812-26. PubMed ID: 26934328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent small ubiquitin-like modifier (SUMO) modification of Maf1 protein controls RNA polymerase III-dependent transcription repression.
    Rohira AD; Chen CY; Allen JR; Johnson DL
    J Biol Chem; 2013 Jun; 288(26):19288-95. PubMed ID: 23673667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond regulation of pol III: Role of MAF1 in growth, metabolism, aging and cancer.
    Zhang S; Li X; Wang HY; Steven Zheng XF
    Biochim Biophys Acta Gene Regul Mech; 2018 Apr; 1861(4):338-343. PubMed ID: 29407795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maf1, a new player in the regulation of human RNA polymerase III transcription.
    Reina JH; Azzouz TN; Hernandez N
    PLoS One; 2006 Dec; 1(1):e134. PubMed ID: 17205138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of RNA polymerase III transcription by Maf1 protein.
    Cieśla M; Boguta M
    Acta Biochim Pol; 2008; 55(2):215-25. PubMed ID: 18560610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammalian Maf1 is a negative regulator of transcription by all three nuclear RNA polymerases.
    Johnson SS; Zhang C; Fromm J; Willis IM; Johnson DL
    Mol Cell; 2007 May; 26(3):367-79. PubMed ID: 17499043
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    McLean KJ; Jacobs-Lorena M
    mBio; 2017 Mar; 8(2):. PubMed ID: 28351924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic programming a lean phenotype by deregulation of RNA polymerase III.
    Willis IM; Moir RD; Hernandez N
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12182-12187. PubMed ID: 30429315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of RNA polymerase III transcription involves SCH9-dependent and SCH9-independent branches of the target of rapamycin (TOR) pathway.
    Lee J; Moir RD; Willis IM
    J Biol Chem; 2009 May; 284(19):12604-8. PubMed ID: 19299514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maf1 and Repression of RNA Polymerase III-Mediated Transcription Drive Adipocyte Differentiation.
    Chen CY; Lanz RB; Walkey CJ; Chang WH; Lu W; Johnson DL
    Cell Rep; 2018 Aug; 24(7):1852-1864. PubMed ID: 30110641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full repression of RNA polymerase III transcription requires interaction between two domains of its negative regulator Maf1.
    Gajda A; Towpik J; Steuerwald U; Müller CW; Lefebvre O; Boguta M
    J Biol Chem; 2010 Nov; 285(46):35719-27. PubMed ID: 20817737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.