These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33475654)

  • 41. Epitaxial Bi
    Huang W; Harnagea C; Tong X; Benetti D; Sun S; Chaker M; Rosei F; Nechache R
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13185-13193. PubMed ID: 30892871
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Facile electrochemical synthesis of CeO2@Ag@CdS nanotube arrays with enhanced photoelectrochemical water splitting performance.
    Zhao M; Li H; Shen X; Ji Z; Xu K
    Dalton Trans; 2015 Dec; 44(46):19935-41. PubMed ID: 26515189
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Dual-Ligand Strategy to Regulate the Nucleation and Growth of Lead Chromate Photoanodes for Photoelectrochemical Water Splitting.
    Zhou H; Zhang D; Gong X; Feng Z; Shi M; Liu Y; Zhang C; Luan P; Zhang P; Fan F; Li R; Li C
    Adv Mater; 2022 Jul; 34(29):e2110610. PubMed ID: 35589018
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Localized surface plasmon-enhanced photoelectrochemical water oxidation by inorganic/organic nano-heterostructure comprising NDI-based D-A-D type small molecule.
    Sanke DM; Ghosh NG; Das S; Karmakar HS; Sarkar A; Zade SS
    J Colloid Interface Sci; 2021 Nov; 601():803-815. PubMed ID: 34102408
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hierarchical SnS
    Zhang F; Chen Y; Zhou W; Ren C; Gao H; Tian G
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9093-9101. PubMed ID: 30758936
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Strategy to Achieve Augmented Photoelectrochemical Water Oxidation via Heteroband Structure Engineering and In Situ Interface Activation.
    He Y; Ding X; Yang Y; Liu Y; Chen M; Yin Y; Cao D; Yan X
    Inorg Chem; 2022 Jan; 61(4):2351-2359. PubMed ID: 35044769
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photoelectrochemical sensitive detection of insulin based on CdS/polydopamine co-sensitized WO
    Wang R; Ma H; Zhang Y; Wang Q; Yang Z; Du B; Wu D; Wei Q
    Biosens Bioelectron; 2017 Oct; 96():345-350. PubMed ID: 28525853
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A sustainable molybdenum oxysulphide-cobalt phosphate photocatalyst for effectual solar-driven water splitting.
    Iqbal N; Khan I; Ali A; Qurashi A
    J Adv Res; 2022 Feb; 36():15-26. PubMed ID: 35127161
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of carbon dots - derived underlayer in hematite photoanodes.
    Guo Q; Luo H; Zhang J; Ruan Q; Prakash Periasamy A; Fang Y; Xie Z; Li X; Wang X; Tang J; Briscoe J; Titirici M; Jorge AB
    Nanoscale; 2020 Oct; 12(39):20220-20229. PubMed ID: 33000831
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced Photoelectrochemical Solar Water Splitting Using a Platinum-Decorated CIGS/CdS/ZnO Photocathode.
    Mali MG; Yoon H; Joshi BN; Park H; Al-Deyab SS; Lim DC; Ahn S; Nervi C; Yoon SS
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21619-25. PubMed ID: 26340310
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lowering the onset potential of Zr-doped hematite nanocoral photoanodes by Al co-doping and surface modification with electrodeposited Co-Pi.
    Jeong IK; Mahadik MA; Hwang JB; Chae WS; Choi SH; Jang JS
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):751-763. PubMed ID: 32818679
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stable Hematite Nanosheet Photoanodes for Enhanced Photoelectrochemical Water Splitting.
    Peerakiatkhajohn P; Yun JH; Chen H; Lyu M; Butburee T; Wang L
    Adv Mater; 2016 Aug; 28(30):6405-10. PubMed ID: 27167876
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Highly Efficient InGaN Nanorods Photoelectrode by Constructing Z-scheme Charge Transfer System for Unbiased Water Splitting.
    Lin J; Zhang Z; Chai J; Cao B; Deng X; Wang W; Liu X; Li G
    Small; 2021 Jan; 17(3):e2006666. PubMed ID: 33350056
    [TBL] [Abstract][Full Text] [Related]  

  • 54. N and Sn Co-Doped hematite photoanodes for efficient solar water oxidation.
    Jiao T; Lu C; Feng K; Deng J; Long D; Zhong J
    J Colloid Interface Sci; 2021 Mar; 585():660-667. PubMed ID: 33127051
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Epitaxial Grown Sb
    Cheng Y; Gong M; Xu T; Liu E; Fan J; Miao H; Hu X
    ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35579330
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dual-Axial Gradient Doping (Zr and Sn) on Hematite for Promoting Charge Separation in Photoelectrochemical Water Splitting.
    Chen D; Liu Z
    ChemSusChem; 2018 Oct; 11(19):3438-3448. PubMed ID: 30098118
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transferred monolayer MoS
    Hassan MA; Kim MW; Johar MA; Waseem A; Kwon MK; Ryu SW
    Sci Rep; 2019 Dec; 9(1):20141. PubMed ID: 31882920
    [TBL] [Abstract][Full Text] [Related]  

  • 58. All Solution-Processed, Hybrid Organic-Inorganic Photocathode for Hydrogen Evolution.
    Rojas HC; Bellani S; Sarduy EA; Fumagalli F; Mayer MT; Schreier M; Grätzel M; Di Fonzo F; Antognazza MR
    ACS Omega; 2017 Jul; 2(7):3424-3431. PubMed ID: 31457664
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Facile Integration between Si and Catalyst for High-Performance Photoanodes by a Multifunctional Bridging Layer.
    Guo B; Batool A; Xie G; Boddula R; Tian L; Jan SU; Gong JR
    Nano Lett; 2018 Feb; 18(2):1516-1521. PubMed ID: 29360384
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CoSe
    Basu M; Zhang ZW; Chen CJ; Lu TH; Hu SF; Liu RS
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26690-26696. PubMed ID: 27635665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.