BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33475916)

  • 1. Evaluation of potential impacts on biodiversity of the salt-tolerant transgenic Eucalyptus camaldulensis harboring an RNA chaperonic RNA-Binding-Protein gene derived from common ice plant.
    Tran NT; Oguchi T; Matsunaga E; Kawaoka A; Watanabe KN; Kikuchi A
    Transgenic Res; 2021 Feb; 30(1):23-34. PubMed ID: 33475916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and evaluation of novel salt-tolerant Eucalyptus trees by molecular breeding using an RNA-Binding-Protein gene derived from common ice plant (Mesembryanthemum crystallinum L.).
    Tran NT; Oguchi T; Akatsuka N; Matsunaga E; Kawaoka A; Yamada A; Ozeki Y; Watanabe KN; Kikuchi A
    Plant Biotechnol J; 2019 Apr; 17(4):801-811. PubMed ID: 30230168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the salt tolerance and environmental biosafety of Eucalyptus camaldulensis harboring a mangrin transgene.
    Yu X; Kikuchi A; Shimazaki T; Yamada A; Ozeki Y; Matsunaga E; Ebinuma H; Watanabe KN
    J Plant Res; 2013 Jan; 126(1):141-50. PubMed ID: 22752709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-year assessment of the environmental impact of transgenic Eucalyptus trees harboring a bacterial choline oxidase gene on biomass, precinct vegetation and the microbial community.
    Oguchi T; Kashimura Y; Mimura M; Yu X; Matsunaga E; Nanto K; Shimada T; Kikuchi A; Watanabe KN
    Transgenic Res; 2014 Oct; 23(5):767-77. PubMed ID: 24927812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental risk assessment of impacts of transgenic
    Tran NT; Oguchi T; Matsunaga E; Kawaoka A; Watanabe KN; Kikuchi A
    Plant Biotechnol (Tokyo); 2018 Dec; 35(4):393-397. PubMed ID: 31892828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The choline oxidase gene codA confers salt tolerance to transgenic Eucalyptus globulus in a semi-confined condition.
    Yu X; Kikuchi A; Matsunaga E; Morishita Y; Nanto K; Sakurai N; Suzuki H; Shibata D; Shimada T; Watanabe KN
    Mol Biotechnol; 2013 Jun; 54(2):320-30. PubMed ID: 22752644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomics of Homeobox7 Enhanced Salt Tolerance in
    Zhang X; Tan B; Zhu D; Dufresne D; Jiang T; Chen S
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34203768
    [No Abstract]   [Full Text] [Related]  

  • 8. Ectopic expression of Mesembryanthemum crystallinum sodium transporter McHKT2 provides salt stress tolerance in Arabidopsis thaliana.
    Nishijima T; Furuhashi M; Sakaoka S; Morikami A; Tsukagoshi H
    Biosci Biotechnol Biochem; 2017 Nov; 81(11):2139-2144. PubMed ID: 29017432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-seq analysis of the response of the halophyte, Mesembryanthemum crystallinum (ice plant) to high salinity.
    Tsukagoshi H; Suzuki T; Nishikawa K; Agarie S; Ishiguro S; Higashiyama T
    PLoS One; 2015; 10(2):e0118339. PubMed ID: 25706745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth modulation effects of CBM2a under the control of AtEXP4 and CaMV35S promoters in Arabidopsis thaliana, Nicotiana tabacum and Eucalyptus camaldulensis.
    Keadtidumrongkul P; Suttangkakul A; Pinmanee P; Pattana K; Kittiwongwattana C; Apisitwanich S; Vuttipongchaikij S
    Transgenic Res; 2017 Aug; 26(4):447-463. PubMed ID: 28349287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drought and salt tolerance enhancement of transgenic Arabidopsis by overexpression of the vacuolar pyrophosphatase 1 (EVP1) gene from Eucalyptus globulus.
    Gamboa MC; Baltierra F; Leon G; Krauskopf E
    Plant Physiol Biochem; 2013 Dec; 73():99-105. PubMed ID: 24080396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of overexpression of radish plasma membrane aquaporins on water-use efficiency, photosynthesis and growth of Eucalyptus trees.
    Tsuchihira A; Hanba YT; Kato N; Doi T; Kawazu T; Maeshima M
    Tree Physiol; 2010 Mar; 30(3):417-30. PubMed ID: 20124554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular characterization of a novel Na⁺/H⁺ antiporter cDNA from Eucalyptus globulus.
    Baltierra F; Castillo M; Gamboa MC; Rothhammer M; Krauskopf E
    Biochem Biophys Res Commun; 2013 Jan; 430(2):535-40. PubMed ID: 23232113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Agrobacterium-mediated transformation of Eucalyptus globulus using explants with shoot apex with introduction of bacterial choline oxidase gene to enhance salt tolerance.
    Matsunaga E; Nanto K; Oishi M; Ebinuma H; Morishita Y; Sakurai N; Suzuki H; Shibata D; Shimada T
    Plant Cell Rep; 2012 Jan; 31(1):225-35. PubMed ID: 22009051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eucalyptus.
    Chen ZZ; Ho CK; Ahn IS; Chiang VL
    Methods Mol Biol; 2006; 344():125-34. PubMed ID: 17033057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphate-induced-1 gene from Eucalyptus (EgPHI-1) enhances osmotic stress tolerance in transgenic tobacco.
    Sousa AO; Assis ET; Pirovani CP; Alvim FC; Costa MG
    Genet Mol Res; 2014 Mar; 13(1):1579-88. PubMed ID: 24668632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional enhancement of a bacterial
    Tran NT; Oguchi T; Matsunaga E; Kawaoka A; Watanabe KN; Kikuchi A
    Plant Biotechnol (Tokyo); 2018 Sep; 35(3):215-224. PubMed ID: 31819726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable transformation of Mesembryanthemum crystallinum (L.) with Agrobacterium rhizogenes harboring the green fluorescent protein targeted to the endoplasmic reticulum.
    Konieczny R; Obert B; Bleho J; Novák O; Heym C; Tuleja M; Müller J; Strnad M; Menzel D; Samaj J
    J Plant Physiol; 2011 May; 168(7):722-9. PubMed ID: 21195506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monoterpene engineering in a woody plant Eucalyptus camaldulensis using a limonene synthase cDNA.
    Ohara K; Matsunaga E; Nanto K; Yamamoto K; Sasaki K; Ebinuma H; Yazaki K
    Plant Biotechnol J; 2010 Jan; 8(1):28-37. PubMed ID: 20055958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum.
    Agarie S; Shimoda T; Shimizu Y; Baumann K; Sunagawa H; Kondo A; Ueno O; Nakahara T; Nose A; Cushman JC
    J Exp Bot; 2007; 58(8):1957-67. PubMed ID: 17452753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.