These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33476161)

  • 1. Modeling Protein Aggregation Kinetics: The Method of Second Stochasticization.
    Shen JL; Tsai MY; Schafer NP; Wolynes PG
    J Phys Chem B; 2021 Feb; 125(4):1118-1133. PubMed ID: 33476161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic lag time in nucleated linear self-assembly.
    Tiwari NS; van der Schoot P
    J Chem Phys; 2016 Jun; 144(23):235101. PubMed ID: 27334194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic Kinetic Treatment of Protein Aggregation and the Effects of Macromolecular Crowding.
    Bridstrup J; Schreck JS; Jorgenson JL; Yuan JM
    J Phys Chem B; 2021 Jun; 125(23):6068-6079. PubMed ID: 34080429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulation of the heterotypic aggregation kinetics of platelets and neutrophils.
    Laurenzi IJ; Diamond SL
    Biophys J; 1999 Sep; 77(3):1733-46. PubMed ID: 10465782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic master equation for early protein aggregation in the transthyretin amyloid disease.
    Liu RN; Kang YM
    Sci Rep; 2020 Jul; 10(1):12437. PubMed ID: 32709875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of aggregation with a finite number of particles and application to viral capsid assembly.
    Hoze N; Holcman D
    J Math Biol; 2015 Jun; 70(7):1685-705. PubMed ID: 25103220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncertainty propagation for deterministic models of biochemical networks using moment equations and the extended Kalman filter.
    Kurdyaeva T; Milias-Argeitis A
    J R Soc Interface; 2021 Aug; 18(181):20210331. PubMed ID: 34343452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binomial moment equations for stochastic reaction systems.
    Barzel B; Biham O
    Phys Rev Lett; 2011 Apr; 106(15):150602. PubMed ID: 21568538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. STOCKS: STOChastic Kinetic Simulations of biochemical systems with Gillespie algorithm.
    Kierzek AM
    Bioinformatics; 2002 Mar; 18(3):470-81. PubMed ID: 11934747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid deterministic/stochastic simulation of complex biochemical systems.
    Lecca P; Bagagiolo F; Scarpa M
    Mol Biosyst; 2017 Nov; 13(12):2672-2686. PubMed ID: 29058744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Path ensembles and path sampling in nonequilibrium stochastic systems.
    Harland B; Sun SX
    J Chem Phys; 2007 Sep; 127(10):104103. PubMed ID: 17867733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass fluctuation kinetics: capturing stochastic effects in systems of chemical reactions through coupled mean-variance computations.
    Gómez-Uribe CA; Verghese GC
    J Chem Phys; 2007 Jan; 126(2):024109. PubMed ID: 17228945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic modeling of cellular networks.
    Stewart-Ornstein J; El-Samad H
    Methods Cell Biol; 2012; 110():111-37. PubMed ID: 22482947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pathwise derivative approach to the computation of parameter sensitivities in discrete stochastic chemical systems.
    Sheppard PW; Rathinam M; Khammash M
    J Chem Phys; 2012 Jan; 136(3):034115. PubMed ID: 22280752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA folding kinetics using Monte Carlo and Gillespie algorithms.
    Clote P; Bayegan AH
    J Math Biol; 2018 Apr; 76(5):1195-1227. PubMed ID: 28780735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks.
    Slepoy A; Thompson AP; Plimpton SJ
    J Chem Phys; 2008 May; 128(20):205101. PubMed ID: 18513044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CERENA: ChEmical REaction Network Analyzer--A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics.
    Kazeroonian A; Fröhlich F; Raue A; Theis FJ; Hasenauer J
    PLoS One; 2016; 11(1):e0146732. PubMed ID: 26807911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalizing Gillespie's Direct Method to Enable Network-Free Simulations.
    Suderman R; Mitra ED; Lin YT; Erickson KE; Feng S; Hlavacek WS
    Bull Math Biol; 2019 Aug; 81(8):2822-2848. PubMed ID: 29594824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarse-grained stochastic processes for microscopic lattice systems.
    Katsoulakis MA; Majda AJ; Vlachos DG
    Proc Natl Acad Sci U S A; 2003 Feb; 100(3):782-7. PubMed ID: 12552105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A stochastic hybrid systems based framework for modeling dependent failure processes.
    Fan M; Zeng Z; Zio E; Kang R; Chen Y
    PLoS One; 2017; 12(2):e0172680. PubMed ID: 28231313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.