BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33476180)

  • 1. Molecular mechanisms underlying cellular effects of human MEK1 mutations.
    Marmion RA; Yang L; Goyal Y; Jindal GA; Wetzel JL; Singh M; Schüpbach T; Shvartsman SY
    Mol Biol Cell; 2021 Apr; 32(9):974-983. PubMed ID: 33476180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Follicle-Stimulating Hormone (FSH)-dependent Regulation of Extracellular Regulated Kinase (ERK) Phosphorylation by the Mitogen-activated Protein (MAP) Kinase Phosphatase MKP3.
    Donaubauer EM; Law NC; Hunzicker-Dunn ME
    J Biol Chem; 2016 Sep; 291(37):19701-12. PubMed ID: 27422819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein Kinase CK2α Maintains Extracellular Signal-regulated Kinase (ERK) Activity in a CK2α Kinase-independent Manner to Promote Resistance to Inhibitors of RAF and MEK but Not ERK in BRAF Mutant Melanoma.
    Zhou B; Ritt DA; Morrison DK; Der CJ; Cox AD
    J Biol Chem; 2016 Aug; 291(34):17804-15. PubMed ID: 27226552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tight control of MEK-ERK activation is essential in regulating proliferation, survival, and cytokine production of CD34+-derived neutrophil progenitors.
    Geest CR; Buitenhuis M; Groot Koerkamp MJ; Holstege FC; Vellenga E; Coffer PJ
    Blood; 2009 Oct; 114(16):3402-12. PubMed ID: 19667405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aberrant extracellular signal-regulated kinase (ERK)1/2 signalling in suicide brain: role of ERK kinase 1 (MEK1).
    Dwivedi Y; Rizavi HS; Zhang H; Roberts RC; Conley RR; Pandey GN
    Int J Neuropsychopharmacol; 2009 Nov; 12(10):1337-54. PubMed ID: 19835659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tay bridge is a negative regulator of EGFR signalling and interacts with Erk and Mkp3 in the Drosophila melanogaster wing.
    Molnar C; de Celis JF
    PLoS Genet; 2013; 9(12):e1003982. PubMed ID: 24348264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oncogenic KRAS and BRAF activation of the MEK/ERK signaling pathway promotes expression of dual-specificity phosphatase 4 (DUSP4/MKP2) resulting in nuclear ERK1/2 inhibition.
    Cagnol S; Rivard N
    Oncogene; 2013 Jan; 32(5):564-76. PubMed ID: 22430215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsically active MEK variants are differentially regulated by proteinases and phosphatases.
    Ordan M; Pallara C; Maik-Rachline G; Hanoch T; Gervasio FL; Glaser F; Fernandez-Recio J; Seger R
    Sci Rep; 2018 Aug; 8(1):11830. PubMed ID: 30087384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MEK1 activation by PAK: a novel mechanism.
    Park ER; Eblen ST; Catling AD
    Cell Signal; 2007 Jul; 19(7):1488-96. PubMed ID: 17314031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MiR-101 promotes nasopharyngeal carcinoma cell apoptosis through inhibiting Ras/Raf/MEK/ERK signaling pathway.
    Wu RS; Qiu EH; Zhu JJ; Wang JR; Lin HL
    Eur Rev Med Pharmacol Sci; 2018 Jan; 22(1):150-157. PubMed ID: 29364482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing photoswitchable MEK.
    Patel AL; Yeung E; McGuire SE; Wu AY; Toettcher JE; Burdine RD; Shvartsman SY
    Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25756-25763. PubMed ID: 31796593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pancreatic tumor cells with mutant K-ras suppress ERK activity by MEK-dependent induction of MAP kinase phosphatase-2.
    Yip-Schneider MT; Lin A; Marshall MS
    Biochem Biophys Res Commun; 2001 Feb; 280(4):992-7. PubMed ID: 11162624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rac-PAK signaling stimulates extracellular signal-regulated kinase (ERK) activation by regulating formation of MEK1-ERK complexes.
    Eblen ST; Slack JK; Weber MJ; Catling AD
    Mol Cell Biol; 2002 Sep; 22(17):6023-33. PubMed ID: 12167697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The tumour suppressor DiRas3 interacts with C-RAF and downregulates MEK activity to restrict cell migration.
    Klingauf M; Beck M; Berge U; Turgay Y; Heinzer S; Horvath P; Kroschewski R
    Biol Cell; 2013 Feb; 105(2):91-107. PubMed ID: 23157514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Negative and positive regulation of MAPK phosphatase 3 controls platelet-derived growth factor-induced Erk activation.
    Jurek A; Amagasaki K; Gembarska A; Heldin CH; Lennartsson J
    J Biol Chem; 2009 Feb; 284(7):4626-34. PubMed ID: 19106095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved cross-interactions in Drosophila and Xenopus between Ras/MAPK signaling and the dual-specificity phosphatase MKP3.
    Gómez AR; López-Varea A; Molnar C; de la Calle-Mustienes E; Ruiz-Gómez M; Gómez-Skarmeta JL; de Celis JF
    Dev Dyn; 2005 Mar; 232(3):695-708. PubMed ID: 15704110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of cell spreading by the activation of MEK/ERK pathway is dependent on AP-1 activity.
    Xu F; Ito S; Hamaguchi M; Senga T
    Nagoya J Med Sci; 2010 Aug; 72(3-4):139-44. PubMed ID: 20942268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady-State Levels of Phosphorylated Mitogen-Activated Protein Kinase Kinase 1/2 Determined by Mortalin/HSPA9 and Protein Phosphatase 1 Alpha in
    Wu PK; Hong SK; Park JI
    Mol Cell Biol; 2017 Sep; 37(18):. PubMed ID: 28674184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crosstalk between cdk5 and MEK-ERK signalling upon opioid receptor stimulation leads to upregulation of activator p25 and MEK1 inhibition in rat brain.
    Ramos-Miguel A; García-Sevilla JA
    Neuroscience; 2012 Jul; 215():17-30. PubMed ID: 22537847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ERK1/2 can feedback-regulate cellular MEK1/2 levels.
    Hong SK; Wu PK; Karkhanis M; Park JI
    Cell Signal; 2015 Oct; 27(10):1939-48. PubMed ID: 26163823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.