These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 33476275)
1. Topology Identification of Multilink Complex Dynamical Networks via Adaptive Observers Incorporating Chaotic Exosignals. Liu H; Li Y; Li Z; Lu J; Lu JA IEEE Trans Cybern; 2022 Jul; 52(7):6255-6268. PubMed ID: 33476275 [TBL] [Abstract][Full Text] [Related]
2. Identifying the switching topology of dynamical networks based on adaptive synchronization. Li K; Yang D; Shi C; Zhou J Chaos; 2023 Dec; 33(12):. PubMed ID: 38048256 [TBL] [Abstract][Full Text] [Related]
3. A New Method for Topology Identification of Complex Dynamical Networks. Zhu S; Zhou J; Chen G; Lu JA IEEE Trans Cybern; 2021 Apr; 51(4):2224-2231. PubMed ID: 30763252 [TBL] [Abstract][Full Text] [Related]
4. Identifying partial topology of complex dynamical networks via a pinning mechanism. Zhu S; Zhou J; Lu JA Chaos; 2018 Apr; 28(4):043108. PubMed ID: 31906666 [TBL] [Abstract][Full Text] [Related]
5. Design of a Robust Synchronization-Based Topology Observer for Complex Delayed Networks with Fixed and Adaptive Coupling Strength. Sun Y; Wu H; Chen Z; Chen Y; Zheng X Entropy (Basel); 2024 Jun; 26(6):. PubMed ID: 38920533 [TBL] [Abstract][Full Text] [Related]
6. Adaptive dynamical networks via neighborhood information: synchronization and pinning control. Lu W Chaos; 2007 Jun; 17(2):023122. PubMed ID: 17614676 [TBL] [Abstract][Full Text] [Related]
7. Synchronization of complex networks of identical and nonidentical chaotic systems via model-matching control. López-Mancilla D; López-Cahuich G; Posadas-Castillo C; Castañeda CE; García-López JH; Vázquez-Gutiérrez JL; Tlelo-Cuautle E PLoS One; 2019; 14(5):e0216349. PubMed ID: 31120901 [TBL] [Abstract][Full Text] [Related]
8. Synchronization transition in neuronal networks composed of chaotic or non-chaotic oscillators. Xu K; Maidana JP; Castro S; Orio P Sci Rep; 2018 May; 8(1):8370. PubMed ID: 29849108 [TBL] [Abstract][Full Text] [Related]
9. Topology identification of fractional-order complex dynamical networks based on auxiliary-system approach. Zheng Y; Wu X; He G; Wang W Chaos; 2021 Apr; 31(4):043125. PubMed ID: 34251221 [TBL] [Abstract][Full Text] [Related]
10. Synchronization of nonlinear coupled networks via aperiodically intermittent pinning control. Liu X; Chen T IEEE Trans Neural Netw Learn Syst; 2015 Jan; 26(1):113-26. PubMed ID: 25532160 [TBL] [Abstract][Full Text] [Related]
12. Cluster synchronization for controlled nodes via the dynamics of edges in complex dynamical networks. Liu L; Chen C; Gao Z; Cheng B PLoS One; 2023; 18(8):e0288657. PubMed ID: 37535696 [TBL] [Abstract][Full Text] [Related]
13. Synchronization of complex dynamical networks via impulsive control. Zhang G; Liu Z; Ma Z Chaos; 2007 Dec; 17(4):043126. PubMed ID: 18163790 [TBL] [Abstract][Full Text] [Related]
14. Synchronization of networks of chaotic oscillators: Structural and dynamical datasets. Sevilla-Escoboza R; Buldú JM Data Brief; 2016 Jun; 7():1185-1189. PubMed ID: 27761501 [TBL] [Abstract][Full Text] [Related]
15. Repeated-drive adaptive feedback identification of network topologies. Yang P; Zheng Z Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052818. PubMed ID: 25493845 [TBL] [Abstract][Full Text] [Related]
16. Adaptive synchronization and pinning control of colored networks. Wu Z; Xu XJ; Chen G; Fu X Chaos; 2012 Dec; 22(4):043137. PubMed ID: 23278072 [TBL] [Abstract][Full Text] [Related]
17. Adaptive complete synchronization of chaotic dynamical network with unknown and mismatched parameters. Xiao Y; Xu W; Li X; Tang S Chaos; 2007 Sep; 17(3):033118. PubMed ID: 17903000 [TBL] [Abstract][Full Text] [Related]
18. Inducing isolated-desynchronization states in complex network of coupled chaotic oscillators. Lin W; Li H; Ying H; Wang X Phys Rev E; 2016 Dec; 94(6-1):062303. PubMed ID: 28085292 [TBL] [Abstract][Full Text] [Related]
19. Topology identification of uncertain nonlinearly coupled complex networks with delays based on anticipatory synchronization. Che Y; Li R; Han C; Cui S; Wang J; Wei X; Deng B Chaos; 2013 Mar; 23(1):013127. PubMed ID: 23556964 [TBL] [Abstract][Full Text] [Related]
20. Using synchronism of chaos for adaptive learning of time-evolving network topology. Sorrentino F; Ott E Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016201. PubMed ID: 19257116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]