These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

39 related articles for article (PubMed ID: 3347636)

  • 1. Modulation of Na/P-cotransport activity in opossum kidney cells by extracellular phosphate.
    Biber J; Forgo J; Murer H
    Prog Clin Biol Res; 1988; 252():87-92. PubMed ID: 3347636
    [No Abstract]   [Full Text] [Related]  

  • 2. Adaptation to phosphate depletion in opossum kidney cells.
    Saxena S; Dansby L; Allon M
    Biochem Biophys Res Commun; 1995 Nov; 216(1):141-7. PubMed ID: 7488080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parathyroid hormone reduces phosphate transport irreversibly in a cultured renal cell line, OK.
    Malmström K; Murer H
    Prog Clin Biol Res; 1988; 252():337-42. PubMed ID: 3347624
    [No Abstract]   [Full Text] [Related]  

  • 4. Role of microtubules in the adaptive response to low phosphate of Na/Pi cotransport in opossum kidney cells.
    Hansch E; Forgo J; Murer H; Biber J
    Pflugers Arch; 1993 Feb; 422(5):516-22. PubMed ID: 8474853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple arachidonic acid metabolites inhibit sodium-dependent phosphate transport in OK cells.
    Silverstein DM; Barac-Nieto M; Spitzer A
    Prostaglandins Leukot Essent Fatty Acids; 1999 Sep; 61(3):165-9. PubMed ID: 10582656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increases in transepithelial vectorial Na+ transport facilitates Na+-dependent L-DOPA transport in renal OK cells.
    Silva E; Gomes P; Soares-da-Silva P
    Life Sci; 2006 Jul; 79(8):723-9. PubMed ID: 16600308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of recombinant IGF-I (somatomedin C) on sodium-dependent phosphate transport in cultured renal epithelium.
    Caverzasio J; Bonjour JP
    Prog Clin Biol Res; 1988; 252():385-6. PubMed ID: 3347628
    [No Abstract]   [Full Text] [Related]  

  • 8. Sodium-dependent inorganic phosphate (Pi) transport and adaptation to low Pi concentration medium in LLC-PK1 cells.
    Caverzasio J; Bonjour JP; Biber J; Brown CD; Murer H
    Prog Clin Biol Res; 1984; 168():315-8. PubMed ID: 6514740
    [No Abstract]   [Full Text] [Related]  

  • 9. Role of microtubules in the rapid regulation of renal phosphate transport in response to acute alterations in dietary phosphate content.
    Lötscher M; Kaissling B; Biber J; Murer H; Levi M
    J Clin Invest; 1997 Mar; 99(6):1302-12. PubMed ID: 9077540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel alkali-tolerant Yarrowia lipolytica strain for dissecting Na+-coupled phosphate transport systems in yeasts.
    Zvyagilskaya R; Persson BL
    Cell Biol Int; 2005 Jan; 29(1):87-94. PubMed ID: 15763505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of lipid peroxidation and poly(ADP-ribose) polymerase activation in oxidant-induced membrane transport dysfunction in opossum kidney cells.
    Min SK; Kim SY; Kim CH; Woo JS; Jung JS; Kim YK
    Toxicol Appl Pharmacol; 2000 Aug; 166(3):196-202. PubMed ID: 10906283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Na-phosphate cotransport in cultured renal epithelial cells: protein-synthesis-dependent and protein-synthesis-independent pathways.
    Murer H; Biber J; Malmström K; Mohrmann I; Coady M
    Adv Exp Med Biol; 1986; 208():73-82. PubMed ID: 3031955
    [No Abstract]   [Full Text] [Related]  

  • 13. Regulation of sodium-coupled phosphate transport by extracellular phosphate in cultured kidney cells (JTC-12).
    Takuwa Y; Takeuchi Y; Ogata E
    Clin Sci (Lond); 1986 Sep; 71(3):307-12. PubMed ID: 3530606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth and differentiation of opossum kidney cells on microscopically transparent microporous membranes.
    Leiderman LJ; Tucker JA; Dennis VW
    Tissue Cell; 1989; 21(3):355-60. PubMed ID: 2683211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the sodium-coupled glucose transport by glucose: protein synthesis dependence.
    Moran A; Hagan M
    Ann N Y Acad Sci; 1985; 456():436-7. PubMed ID: 3867310
    [No Abstract]   [Full Text] [Related]  

  • 16. How could a cell regulate its internal Pi concentration?
    Kemp GJ; Bevington A
    Biochem Soc Trans; 1989 Dec; 17(6):1092. PubMed ID: 2628096
    [No Abstract]   [Full Text] [Related]  

  • 17. Pi transport and metabolism in mammalian skeletal muscle.
    Kemp GJ; Polgreen KE; Radda GK
    Biochem Soc Trans; 1990 Aug; 18(4):625-6. PubMed ID: 2276478
    [No Abstract]   [Full Text] [Related]  

  • 18. Na(+)-dependent nucleoside uptake in an established renal epithelial cell line, OK.
    Doherty AJ; Jarvis SM
    Biochem Soc Trans; 1990 Dec; 18(6):1246-7. PubMed ID: 2088894
    [No Abstract]   [Full Text] [Related]  

  • 19. Cellular sodium transport and hypertension: a new hypothesis.
    Llaurado JG
    West J Med; 1983 Nov; 139(5):715-6. PubMed ID: 6659499
    [No Abstract]   [Full Text] [Related]  

  • 20. The effects of injecting 'energy-rich' phosphate compounds on the active transport of ions in the giant axons of Loligo.
    CALDWELL PC; HODGKIN AL; KEYNES RD; SHAW TL
    J Physiol; 1960 Jul; 152(3):561-90. PubMed ID: 13806926
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.