BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 33476554)

  • 1. Personalized Genome-Scale Metabolic Models Identify Targets of Redox Metabolism in Radiation-Resistant Tumors.
    Lewis JE; Forshaw TE; Boothman DA; Furdui CM; Kemp ML
    Cell Syst; 2021 Jan; 12(1):68-81.e11. PubMed ID: 33476554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance.
    Lewis JE; Kemp ML
    Nat Commun; 2021 May; 12(1):2700. PubMed ID: 33976213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein S-glutathionylation reactions as a global inhibitor of cell metabolism for the desensitization of hydrogen peroxide signals.
    Mailloux RJ
    Redox Biol; 2020 May; 32():101472. PubMed ID: 32171726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.
    Mailloux RJ; Treberg JR
    Redox Biol; 2016 Aug; 8():110-8. PubMed ID: 26773874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
    Korge P; Calmettes G; Weiss JN
    Biochim Biophys Acta; 2015; 1847(6-7):514-25. PubMed ID: 25701705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-Scale Modeling of NADPH-Driven β-Lapachone Sensitization in Head and Neck Squamous Cell Carcinoma.
    Lewis JE; Costantini F; Mims J; Chen X; Furdui CM; Boothman DA; Kemp ML
    Antioxid Redox Signal; 2018 Oct; 29(10):937-952. PubMed ID: 28762750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating mitochondrial energetics, redox and ROS metabolic networks: a two-compartment model.
    Kembro JM; Aon MA; Winslow RL; O'Rourke B; Cortassa S
    Biophys J; 2013 Jan; 104(2):332-43. PubMed ID: 23442855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flux through mitochondrial redox circuits linked to nicotinamide nucleotide transhydrogenase generates counterbalance changes in energy expenditure.
    Smith CD; Schmidt CA; Lin CT; Fisher-Wellman KH; Neufer PD
    J Biol Chem; 2020 Nov; 295(48):16207-16216. PubMed ID: 32747443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities.
    Ronchi JA; Figueira TR; Ravagnani FG; Oliveira HC; Vercesi AE; Castilho RF
    Free Radic Biol Med; 2013 Oct; 63():446-56. PubMed ID: 23747984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADPH- and NADH-dependent oxygen radical generation by rat liver nuclei in the presence of redox cycling agents and iron.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1990 Dec; 283(2):326-33. PubMed ID: 2275546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox homeostasis of breast cancer lineages contributes to differential cell death response to exogenous hydrogen peroxide.
    Hecht F; Cazarin JM; Lima CE; Faria CC; Leitão AA; Ferreira AC; Carvalho DP; Fortunato RS
    Life Sci; 2016 Aug; 158():7-13. PubMed ID: 27328417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nicotinamide nucleotide transhydrogenase is required for brain mitochondrial redox balance under hampered energy substrate metabolism and high-fat diet.
    Francisco A; Ronchi JA; Navarro CDC; Figueira TR; Castilho RF
    J Neurochem; 2018 Dec; 147(5):663-677. PubMed ID: 30281804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatio-temporal changes in glutathione and thioredoxin redox couples during ionizing radiation-induced oxidative stress regulate tumor radio-resistance.
    Patwardhan RS; Sharma D; Checker R; Thoh M; Sandur SK
    Free Radic Res; 2015 Oct; 49(10):1218-32. PubMed ID: 26021764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies.
    Kalyanaraman B; Cheng G; Hardy M; Ouari O; Bennett B; Zielonka J
    Redox Biol; 2018 May; 15():347-362. PubMed ID: 29306792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sod1 integrates oxygen availability to redox regulate NADPH production and the thiol redoxome.
    Montllor-Albalate C; Kim H; Thompson AE; Jonke AP; Torres MP; Reddi AR
    Proc Natl Acad Sci U S A; 2022 Jan; 119(1):. PubMed ID: 34969852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring Mitochondrial Hydrogen Peroxide Levels and Glutathione Redox Equilibrium in Drosophila Neuron Subtypes Using Redox-Sensitive Fluorophores and 3D Imaging.
    Buhlman LM; Keoseyan PP; Houlihan KL; Juba AN
    Methods Mol Biol; 2021; 2276():113-127. PubMed ID: 34060036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress, redox, and the tumor microenvironment.
    Cook JA; Gius D; Wink DA; Krishna MC; Russo A; Mitchell JB
    Semin Radiat Oncol; 2004 Jul; 14(3):259-66. PubMed ID: 15254869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidants in Physiological Processes.
    Knaus UG
    Handb Exp Pharmacol; 2021; 264():27-47. PubMed ID: 32767144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox cycling by motexafin gadolinium enhances cellular response to ionizing radiation by forming reactive oxygen species.
    Magda D; Lepp C; Gerasimchuk N; Lee I; Sessler JL; Lin A; Biaglow JE; Miller RA
    Int J Radiat Oncol Biol Phys; 2001 Nov; 51(4):1025-36. PubMed ID: 11704327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New Challenges to Study Heterogeneity in Cancer Redox Metabolism.
    Benfeitas R; Uhlen M; Nielsen J; Mardinoglu A
    Front Cell Dev Biol; 2017; 5():65. PubMed ID: 28744456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.