These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 33476596)

  • 1. Synthetic by design: Exploiting tissue self-organization to explore early human embryology.
    Rosado-Olivieri EA; Brivanlou AH
    Dev Biol; 2021 Jun; 474():16-21. PubMed ID: 33476596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stem Cell-Based Embryo Models: En Route to a Programmable Future.
    Chen Y; Shao Y
    J Mol Biol; 2022 Feb; 434(3):167353. PubMed ID: 34774563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic embryology: controlling geometry to model early mammalian development.
    Metzger JJ; Simunovic M; Brivanlou AH
    Curr Opin Genet Dev; 2018 Oct; 52():86-91. PubMed ID: 29957587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pluripotent stem cell-based model for post-implantation human amniotic sac development.
    Shao Y; Taniguchi K; Townshend RF; Miki T; Gumucio DL; Fu J
    Nat Commun; 2017 Aug; 8(1):208. PubMed ID: 28785084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling post-implantation stages of human development into early organogenesis with stem-cell-derived peri-gastruloids.
    Liu L; Oura S; Markham Z; Hamilton JN; Skory RM; Li L; Sakurai M; Wang L; Pinzon-Arteaga CA; Plachta N; Hon GC; Wu J
    Cell; 2023 Aug; 186(18):3776-3792.e16. PubMed ID: 37478861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Animated teaching improves student learning of human gastrulation and neurulation.
    O'Connor C; Jordan K; Vagg T; Murphy CE; Barry DS; Toulouse A; Fletcher JM; Downer EJ
    Ann Anat; 2023 Apr; 247():152057. PubMed ID: 36702366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic human embryology: towards a quantitative future.
    Shao Y; Fu J
    Curr Opin Genet Dev; 2020 Aug; 63():30-35. PubMed ID: 32172182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mouse embryo model derived exclusively from embryonic stem cells undergoes neurulation and heart development.
    Lau KYC; Rubinstein H; Gantner CW; Hadas R; Amadei G; Stelzer Y; Zernicka-Goetz M
    Cell Stem Cell; 2022 Oct; 29(10):1445-1458.e8. PubMed ID: 36084657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro attachment and symmetry breaking of a human embryo model assembled from primed embryonic stem cells.
    Simunovic M; Siggia ED; Brivanlou AH
    Cell Stem Cell; 2022 Jun; 29(6):962-972.e4. PubMed ID: 35659878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rethinking embryology in vitro: A synergy between engineering, data science and theory.
    Gritti N; Oriola D; Trivedi V
    Dev Biol; 2021 Jun; 474():48-61. PubMed ID: 33152275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding the boundaries of synthetic development.
    Martyn I; Gartner ZJ
    Dev Biol; 2021 Jun; 474():62-70. PubMed ID: 33587913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled modelling of human epiblast and amnion development using stem cells.
    Zheng Y; Xue X; Shao Y; Wang S; Esfahani SN; Li Z; Muncie JM; Lakins JN; Weaver VM; Gumucio DL; Fu J
    Nature; 2019 Sep; 573(7774):421-425. PubMed ID: 31511693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From embryos to embryoids: How external signals and self-organization drive embryonic development.
    Morales JS; Raspopovic J; Marcon L
    Stem Cell Reports; 2021 May; 16(5):1039-1050. PubMed ID: 33979592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human embryonic development: from peri-implantation to gastrulation.
    Zhai J; Xiao Z; Wang Y; Wang H
    Trends Cell Biol; 2022 Jan; 32(1):18-29. PubMed ID: 34417090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amniotic ectoderm expansion in mouse occurs via distinct modes and requires SMAD5-mediated signalling.
    Dobreva MP; Abon Escalona V; Lawson KA; Sanchez MN; Ponomarev LC; Pereira PNG; Stryjewska A; Criem N; Huylebroeck D; Chuva de Sousa Lopes SM; Aerts S; Zwijsen A
    Development; 2018 Jul; 145(13):. PubMed ID: 29884675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel synthetic biology approaches for developmental systems.
    Ho C; Morsut L
    Stem Cell Reports; 2021 May; 16(5):1051-1064. PubMed ID: 33979593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of human neurulation using bioengineered pluripotent stem cell culture.
    Xue X; Wang RP; Fu J
    Curr Opin Biomed Eng; 2020 Mar; 13():127-133. PubMed ID: 32328535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling Mammalian Gastrulation With Embryonic Stem Cells.
    Siggia ED; Warmflash A
    Curr Top Dev Biol; 2018; 129():1-23. PubMed ID: 29801527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental embryology of gastrulation: pluripotent stem cells as a new model system.
    Moris N; Martinez Arias A; Steventon B
    Curr Opin Genet Dev; 2020 Oct; 64():78-83. PubMed ID: 32663757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human embryoids: A new strategy of recreating the first steps of embryonic development in vitro.
    Zhang M; Reis AH; Simunovic M
    Semin Cell Dev Biol; 2023 May; 141():14-22. PubMed ID: 35871155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.