BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33476612)

  • 1. A phenylalanine dynamic switch controls the interfacial activation of Rhizopus chinensis lipase.
    Wang S; Xu Y; Yu XW
    Int J Biol Macromol; 2021 Mar; 173():1-12. PubMed ID: 33476612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Propeptide in
    Wang S; Xu Y; Yu XW
    J Agric Food Chem; 2021 Apr; 69(14):4263-4275. PubMed ID: 33797235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Basis by Which the N-Terminal Polypeptide Segment of
    Zhang M; Yu XW; Xu Y; Guo RT; Swapna GVT; Szyperski T; Hunt JF; Montelione GT
    Biochemistry; 2019 Sep; 58(38):3943-3954. PubMed ID: 31436959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Met93 and Thr96 in the lid hinge region of Rhizopus chinensis lipase.
    Zhu SS; Li M; Yu X; Xu Y
    Appl Biochem Biotechnol; 2013 May; 170(2):436-47. PubMed ID: 23546870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective disruption of disulphide bonds lowered activation energy and improved catalytic efficiency in TALipB from Trichosporon asahii MSR54: MD simulations revealed flexible lid and extended substrate binding area in the mutant.
    Singh Y; Gupta N; Verma VV; Goel M; Gupta R
    Biochem Biophys Res Commun; 2016 Mar; 472(1):223-30. PubMed ID: 26930469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of a Functionally Distinct Rhizopus oryzae Lipase through Protein Folding Memory.
    Satomura A; Kuroda K; Ueda M
    PLoS One; 2015; 10(5):e0124545. PubMed ID: 25970342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-Glycosylation Engineering to Improve the Constitutive Expression of Rhizopus oryzae Lipase in Komagataella phaffii.
    Yu XW; Yang M; Jiang C; Zhang X; Xu Y
    J Agric Food Chem; 2017 Jul; 65(29):6009-6015. PubMed ID: 28681607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidation of pressure-induced lid movement and catalysis behavior of Rhizopus chinensis lipase.
    Chen G; Tang J; Miao M; Jiang B; Jin J; Feng B
    Int J Biol Macromol; 2017 Oct; 103():360-365. PubMed ID: 28472692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the catalytic mechanism of a fungal lipase using computer-aided design and structural mutants.
    Beer HD; Wohlfahrt G; McCarthy JE; Schomburg D; Schmid RD
    Protein Eng; 1996 Jun; 9(6):507-17. PubMed ID: 8862551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a novel thiol activated phospholipase TAPLB1 from Trichosporon asahii MSR 54.
    Dua A; Faridi S; Kashyap A; Gupta R
    Int J Biol Macromol; 2018 Dec; 120(Pt A):537-546. PubMed ID: 30153461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. π-π stacking interaction is a key factor for the stability of GH11 xylanases at low pH.
    Ge HH; Qiu Y; Yi ZW; Zeng RY; Zhang GY
    Int J Biol Macromol; 2019 Mar; 124():895-902. PubMed ID: 30517843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient production of (2)H, (13)C, (15)N-enriched industrial enzyme Rhizopus chinensis lipase with native disulfide bonds.
    Zhang M; Yu XW; Swapna GV; Xiao R; Zheng H; Sha C; Xu Y; Montelione GT
    Microb Cell Fact; 2016 Jul; 15(1):123. PubMed ID: 27411547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-level expression of pro-form lipase from Rhizopus oryzae in Pichia pastoris and its purification and characterization.
    Wang JR; Li YY; Xu SD; Li P; Liu JS; Liu DN
    Int J Mol Sci; 2013 Dec; 15(1):203-17. PubMed ID: 24368519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression and characterization of a novel lipase from Aspergillus fumigatus with high specific activity.
    Shangguan JJ; Liu YQ; Wang FJ; Zhao J; Fan LQ; Li SX; Xu JH
    Appl Biochem Biotechnol; 2011 Oct; 165(3-4):949-62. PubMed ID: 21744116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural insights into the mechanism of the drastic changes in enzymatic activity of the cytochrome P450 vitamin D
    Yasutake Y; Kameda T; Tamura T
    Acta Crystallogr F Struct Biol Commun; 2017 May; 73(Pt 5):266-275. PubMed ID: 28471358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ and real-time insight into Rhizopus chinensis lipase under high pressure and temperature: Conformational traits and biobehavioural analysis.
    Chen G; Zhang Q; Chen H; Lu Q; Miao M; Campanella OH; Feng B
    Int J Biol Macromol; 2020 Jul; 154():1314-1323. PubMed ID: 31733249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen-deuterium exchange mass spectrometry captures distinct dynamics upon substrate and inhibitor binding to a transporter.
    Jia R; Martens C; Shekhar M; Pant S; Pellowe GA; Lau AM; Findlay HE; Harris NJ; Tajkhorshid E; Booth PJ; Politis A
    Nat Commun; 2020 Dec; 11(1):6162. PubMed ID: 33268777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alteration of chain length selectivity of a Rhizopus delemar lipase through site-directed mutagenesis.
    Joerger RD; Haas MJ
    Lipids; 1994 Jun; 29(6):377-84. PubMed ID: 8090057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel self-activation mechanism of Candida antarctica lipase B.
    Luan B; Zhou R
    Phys Chem Chem Phys; 2017 Jun; 19(24):15709-15714. PubMed ID: 28589990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Interplay between the Dimer Interface and the Substrate-Binding Site of Human Peptidylarginine Deiminase 4.
    Lee CY; Lin CC; Liu YL; Liu GY; Liu JH; Hung HC
    Sci Rep; 2017 Feb; 7():42662. PubMed ID: 28209966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.