BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33476612)

  • 21. Enhancing the thermostability of Rhizopus chinensis lipase by rational design and MD simulations.
    Wang R; Wang S; Xu Y; Yu X
    Int J Biol Macromol; 2020 Oct; 160():1189-1200. PubMed ID: 32485250
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and molecular dynamics studies of a C1-oxidizing lytic polysaccharide monooxygenase from Heterobasidion irregulare reveal amino acids important for substrate recognition.
    Liu B; Kognole AA; Wu M; Westereng B; Crowley MF; Kim S; Dimarogona M; Payne CM; Sandgren M
    FEBS J; 2018 Jun; 285(12):2225-2242. PubMed ID: 29660793
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structures of carboxypeptidase T complexes with transition-state analogs.
    Akparov VK; Timofeev VI; Khaliullin IG; Švedas V; Kuranova IP; Rakitina TV
    J Biomol Struct Dyn; 2018 Nov; 36(15):3958-3966. PubMed ID: 29129130
    [No Abstract]   [Full Text] [Related]  

  • 24. Structure of Outward-Facing PglK and Molecular Dynamics of Lipid-Linked Oligosaccharide Recognition and Translocation.
    Perez C; Mehdipour AR; Hummer G; Locher KP
    Structure; 2019 Apr; 27(4):669-678.e5. PubMed ID: 30799077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conversion of a Rhizopus chinensis lipase into an esterase by lid swapping.
    Yu XW; Zhu SS; Xiao R; Xu Y
    J Lipid Res; 2014 Jun; 55(6):1044-51. PubMed ID: 24670990
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of helix and fingertip mutations on the thermostability of xyn11A investigated by molecular dynamics simulations and enzyme activity assays.
    Sutthibutpong T; Rattanarojpong T; Khunrae P
    J Biomol Struct Dyn; 2018 Nov; 36(15):3978-3992. PubMed ID: 29129140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical Study of Sesterfisherol Biosynthesis: Computational Prediction of Key Amino Acid Residue in Terpene Synthase.
    Sato H; Narita K; Minami A; Yamazaki M; Wang C; Suemune H; Nagano S; Tomita T; Oikawa H; Uchiyama M
    Sci Rep; 2018 Feb; 8(1):2473. PubMed ID: 29410538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selectively Modulating Conformational States of USP7 Catalytic Domain for Activation.
    Özen A; Rougé L; Bashore C; Hearn BR; Skelton NJ; Dueber EC
    Structure; 2018 Jan; 26(1):72-84.e7. PubMed ID: 29249604
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solvent-induced lid opening in lipases: a molecular dynamics study.
    Rehm S; Trodler P; Pleiss J
    Protein Sci; 2010 Nov; 19(11):2122-30. PubMed ID: 20812327
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural homologies, importance for catalysis and lipid binding of the N-terminal peptide of a fungal and a pancreatic lipase.
    Frikha F; Miled N; Bacha AB; Mejdoub H; Gargouri Y
    Protein Pept Lett; 2010 Feb; 17(2):254-9. PubMed ID: 20214648
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coupled effects of salt and pressure on catalytic ability of Rhizopus chinensis lipase.
    Chen G; Wang L; Miao M; Jia C; Feng B
    J Sci Food Agric; 2017 Dec; 97(15):5381-5387. PubMed ID: 28500670
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamical origins of heat capacity changes in enzyme-catalysed reactions.
    van der Kamp MW; Prentice EJ; Kraakman KL; Connolly M; Mulholland AJ; Arcus VL
    Nat Commun; 2018 Mar; 9(1):1177. PubMed ID: 29563521
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancing the Thermostability and Catalytic Activity of the Lipase from
    Wang Y; Wang Z; Yu H; Teng H; Wu J; Xu J; Yang L
    J Agric Food Chem; 2024 Jul; 72(26):14912-14921. PubMed ID: 38913033
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural insights into inhibitor binding to a fungal ortholog of aspartate semialdehyde dehydrogenase.
    Dahal GP; Viola RE
    Biochem Biophys Res Commun; 2018 Sep; 503(4):2848-2854. PubMed ID: 30107909
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure and proposed mechanism of an enantioselective hydroalkoxylation enzyme from Penicillium herquei.
    Feng Y; Yu X; Huang JW; Liu W; Li Q; Hu Y; Yang Y; Chen Y; Jin J; Li H; Chen CC; Guo RT
    Biochem Biophys Res Commun; 2019 Aug; 516(3):801-805. PubMed ID: 31256936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of the removal of N-terminal non-structured amino acids on activity and stability of xylanases from Orpinomyces sp. PC-2.
    Ventorim RZ; de Oliveira Mendes TA; Trevizano LM; Dos Santos Camargos AM; Guimarães VM
    Int J Biol Macromol; 2018 Jan; 106():312-319. PubMed ID: 28782612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional and structural characterization of a novel catechol-O-methyltransferase from Schizosaccharomyces pombe.
    Wang Q; Teng M; Li X
    IUBMB Life; 2019 Mar; 71(3):330-339. PubMed ID: 30501007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The interplay of protein-ligand and water-mediated interactions shape affinity and selectivity in the LAO binding protein.
    Vergara R; Romero-Romero S; Velázquez-López I; Espinoza-Pérez G; Rodríguez-Hernández A; Pulido NO; Sosa-Peinado A; Rodríguez-Romero A; Fernández-Velasco DA
    FEBS J; 2020 Feb; 287(4):763-782. PubMed ID: 31348608
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How to limit the speed of a motor: the intricate regulation of the XPB ATPase and translocase in TFIIH.
    Kappenberger J; Koelmel W; Schoenwetter E; Scheuer T; Woerner J; Kuper J; Kisker C
    Nucleic Acids Res; 2020 Dec; 48(21):12282-12296. PubMed ID: 33196848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Altering the activation mechanism in Thermomyces lanuginosus lipase.
    Skjold-Jørgensen J; Vind J; Svendsen A; Bjerrum MJ
    Biochemistry; 2014 Jul; 53(25):4152-60. PubMed ID: 24870718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.