BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 33476865)

  • 1. Synthesis of novel 1,2,3 triazole derivatives and assessment of their potential cholinesterases, glutathione S-transferase enzymes inhibitory properties: An in vitro and in silico study.
    Çelik F; Türkan F; Aras A; Atalar MN; Karaman HS; Ünver Y; Kahriman N
    Bioorg Chem; 2021 Feb; 107():104606. PubMed ID: 33476865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, design, and assessment of novel morpholine-derived Mannich bases as multifunctional agents for the potential enzyme inhibitory properties including docking study.
    Boy S; Türkan F; Beytur M; Aras A; Akyıldırım O; Karaman HS; Yüksek H
    Bioorg Chem; 2021 Feb; 107():104524. PubMed ID: 33317836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel benzo[b]xanthene derivatives: Bismuth(III) triflate-catalyzed one-pot synthesis, characterization, and acetylcholinesterase, glutathione S-transferase, and butyrylcholinesterase inhibitory properties.
    Turhan K; Pektaş B; Türkan F; Tuğcu FT; Turgut Z; Taslimi P; Karaman HS; Gulcin I
    Arch Pharm (Weinheim); 2020 Aug; 353(8):e2000030. PubMed ID: 32452582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, Spectroscopic Analysis, and in Vitro/in Silico Biological Studies of Novel Piperidine Derivatives Heterocyclic Schiff-Mannich Base Compounds.
    Boy S; Aras A; Türkan F; Akyıldırım O; Beytur M; Sedef Karaman H; Manap S; Yüksek H
    Chem Biodivers; 2021 Dec; 18(12):e2100433. PubMed ID: 34596972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flavonols and 4-thioflavonols as potential acetylcholinesterase and butyrylcholinesterase inhibitors: Synthesis, structure-activity relationship and molecular docking studies.
    Mughal EU; Sadiq A; Ashraf J; Zafar MN; Sumrra SH; Tariq R; Mumtaz A; Javid A; Khan BA; Ali A; Javed CO
    Bioorg Chem; 2019 Oct; 91():103124. PubMed ID: 31319297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triazole substituted metal-free, metallo-phthalocyanines and their water soluble derivatives as potential cholinesterases inhibitors: Design, synthesis and in vitro inhibition study.
    Arslan T; Çakır N; Keleş T; Biyiklioglu Z; Senturk M
    Bioorg Chem; 2019 Sep; 90():103100. PubMed ID: 31288136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholinesterase Inhibitory Activity of Some semi-Rigid Spiro Heterocycles: POM Analyses and Crystalline Structure of Pharmacophore Site.
    Hadda TB; Talhi O; Silva ASM; Senol FS; Orhan IE; Rauf A; Mabkhot YN; Bachari K; Warad I; Farghaly TA; Althagafi II; Mubarak MS
    Mini Rev Med Chem; 2018; 18(8):711-716. PubMed ID: 28714400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition metal complexes of a multidentate Schiff base ligand containing pyridine: synthesis, characterization, enzyme inhibitions, antioxidant properties, and molecular docking studies.
    Bursal E; Turkan F; Buldurun K; Turan N; Aras A; Çolak N; Murahari M; Yergeri MC
    Biometals; 2021 Apr; 34(2):393-406. PubMed ID: 33528765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel tacrine-coumarin hybrids linked to 1,2,3-triazole as anti-Alzheimer's compounds: In vitro and in vivo biological evaluation and docking study.
    Najafi Z; Mahdavi M; Saeedi M; Karimpour-Razkenari E; Edraki N; Sharifzadeh M; Khanavi M; Akbarzadeh T
    Bioorg Chem; 2019 Mar; 83():303-316. PubMed ID: 30396115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Syntheses, cholinesterases inhibition, and molecular docking studies of pyrido[2,3-b]pyrazine derivatives.
    Hameed A; Zehra ST; Shah SJ; Khan KM; Alharthy RD; Furtmann N; Bajorath J; Tahir MN; Iqbal J
    Chem Biol Drug Des; 2015 Nov; 86(5):1115-20. PubMed ID: 25951978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, molecular docking, and biological activity of 2-vinyl chromones: Toward selective butyrylcholinesterase inhibitors for potential Alzheimer's disease therapeutics.
    Makhaeva GF; Boltneva NP; Lushchekina SV; Rudakova EV; Serebryakova OG; Kulikova LN; Beloglazkin AA; Borisov RS; Richardson RJ
    Bioorg Med Chem; 2018 Sep; 26(16):4716-4725. PubMed ID: 30104121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, Characterization and Cholinesterase Inhibition Studies of New Arylidene Aminothiazolylethanone Derivatives.
    Channar PA; Shah MS; Saeed A; Khan SU; Larik FA; Shabir G; Iqbal J
    Med Chem; 2017; 13(7):648-653. PubMed ID: 28266279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of New Chromenone Derivatives as Cholinesterase Inhibitors and Molecular Docking Studies.
    Iqbal J; Abbasi MSA; Zaib S; Afridi S; Furtmann N; Bajorath J; Langer P
    Med Chem; 2018; 14(8):809-817. PubMed ID: 29473519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and anticholinesterase activity of new substituted benzo[d]oxazole-based derivatives.
    Pouramiri B; Moghimi S; Mahdavi M; Nadri H; Moradi A; Tavakolinejad-Kermani E; Firoozpour L; Asadipour A; Foroumadi A
    Chem Biol Drug Des; 2017 May; 89(5):783-789. PubMed ID: 27863021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico, theoretical biointerface analysis and in vitro kinetic analysis of amine compounds interaction with acetylcholinesterase and butyrylcholinesterase.
    Kandasamy S; Loganathan C; Sakayanathan P; Karthikeyan S; Stephen AD; Marimuthu DK; Ravichandran S; Sivalingam V; Thayumanavan P
    Int J Biol Macromol; 2021 Aug; 185():750-760. PubMed ID: 34216669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and cholinesterase inhibitory activity study of new piperidone grafted spiropyrrolidines.
    Basiri A; Abd Razik BM; Ezzat MO; Kia Y; Kumar RS; Almansour AI; Arumugam N; Murugaiyah V
    Bioorg Chem; 2017 Dec; 75():210-216. PubMed ID: 28987876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, synthesis, characterization of peripherally tetra-pyridine-triazole-substituted phthalocyanines and their inhibitory effects on cholinesterases (AChE/BChE) and carbonic anhydrases (hCA I, II and IX).
    Arslan T; Buğrahan Ceylan M; Baş H; Biyiklioglu Z; Senturk M
    Dalton Trans; 2020 Jan; 49(1):203-209. PubMed ID: 31808483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-silico identification of the binding mode of synthesized adamantyl derivatives inside cholinesterase enzymes.
    Al-Aboudi A; Al-Qawasmeh RA; Shahwan A; Mahmood U; Khalid A; Ul-Haq Z
    Acta Pharmacol Sin; 2015 Jul; 36(7):879-86. PubMed ID: 25937631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Piperazine derivatives with potent drug moiety as efficient acetylcholinesterase, butyrylcholinesterase, and glutathione S-transferase inhibitors.
    Karaytuğ MO; Balcı N; Türkan F; Gürbüz M; Demirkol ME; Namlı Z; Tamam L; Gülçin İ
    J Biochem Mol Toxicol; 2023 Feb; 37(2):e23259. PubMed ID: 36419212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, structure-activity relationship and molecular docking studies of 3-O-flavonol glycosides as cholinesterase inhibitors.
    Mughal EU; Javid A; Sadiq A; Murtaza S; Zafar MN; Khan BA; Sumrra SH; Tahir MN; Kanwal ; Khan KM
    Bioorg Med Chem; 2018 Jul; 26(12):3696-3706. PubMed ID: 29886083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.