BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33476981)

  • 1. p53 affects epigenetic signature on SOCS1 promoter in response to TLR4 inhibition.
    Sheikh T; Sen E
    Cytokine; 2021 Apr; 140():155418. PubMed ID: 33476981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silencing SOCS1 via Liposome-Packed siRNA Sustains TLR4-Ligand Adjuvant.
    Hildebrand D; Metz-Zumaran C; Jaschkowitz G; Heeg K
    Front Immunol; 2019; 10():1279. PubMed ID: 31214204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutant Isocitrate Dehydrogenase 1 Disrupts PKM2-β-Catenin-BRG1 Transcriptional Network-Driven CD47 Expression.
    Gowda P; Patrick S; Singh A; Sheikh T; Sen E
    Mol Cell Biol; 2018 May; 38(9):. PubMed ID: 29463646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The expression of SOCS1 and TLR4-NFkappaB pathway molecules in neoplastic cells as potential biomarker for the aggressive tumor phenotype in laryngeal carcinoma.
    Starska K; Forma E; Lewy-Trenda I; Stasikowska O; Bryś M; Krajewska WM; Łukomski M
    Folia Histochem Cytobiol; 2009 Jan; 47(3):401-10. PubMed ID: 20164024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endotoxin uptake in mouse liver is blocked by endotoxin pretreatment through a suppressor of cytokine signaling-1-dependent mechanism.
    Scott MJ; Liu S; Shapiro RA; Vodovotz Y; Billiar TR
    Hepatology; 2009 May; 49(5):1695-708. PubMed ID: 19296467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiotherapy resistance acquisition in Glioblastoma. Role of SOCS1 and SOCS3.
    Ventero MP; Fuentes-Baile M; Quereda C; Perez-Valeciano E; Alenda C; Garcia-Morales P; Esposito D; Dorado P; Manuel Barbera V; Saceda M
    PLoS One; 2019; 14(2):e0212581. PubMed ID: 30811476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumour-promoting role of SOCS1 in colorectal cancer cells.
    Tobelaim WS; Beaurivage C; Champagne A; Pomerleau V; Simoneau A; Chababi W; Yeganeh M; Thibault P; Klinck R; Carrier JC; Ferbeyre G; Ilangumaran S; Saucier C
    Sci Rep; 2015 Sep; 5():14301. PubMed ID: 26391193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SOCS1 regulates the IFN but not NFkappaB pathway in TLR-stimulated human monocytes and macrophages.
    Prêle CM; Woodward EA; Bisley J; Keith-Magee A; Nicholson SE; Hart PH
    J Immunol; 2008 Dec; 181(11):8018-26. PubMed ID: 19017994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prognostic significance of SOCS1 and SOCS3 tumor suppressors and oncogenic signaling pathway genes in hepatocellular carcinoma.
    Khan MGM; Ghosh A; Variya B; Santharam MA; Ihsan AU; Ramanathan S; Ilangumaran S
    BMC Cancer; 2020 Aug; 20(1):774. PubMed ID: 32807134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of SOCS1 and the downstream targets of its putative tumor suppressor functions in prostate cancer.
    Chevrier M; Bobbala D; Villalobos-Hernandez A; Khan MG; Ramanathan S; Saucier C; Ferbeyre G; Geha S; Ilangumaran S
    BMC Cancer; 2017 Feb; 17(1):157. PubMed ID: 28235401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The IFN-gamma-dependent suppressor of cytokine signaling 1 promoter activity is positively regulated by IFN regulatory factor-1 and Sp1 but repressed by growth factor independence-1b and Krüppel-like factor-4, and it is dysregulated in psoriatic keratinocytes.
    Madonna S; Scarponi C; Sestito R; Pallotta S; Cavani A; Albanesi C
    J Immunol; 2010 Aug; 185(4):2467-81. PubMed ID: 20644166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation of SOCS1 Inhibits the SOCS1-p53 Tumor Suppressor Axis.
    Saint-Germain E; Mignacca L; Huot G; Acevedo M; Moineau-Vallée K; Calabrese V; Bourdeau V; Rowell MC; Ilangumaran S; Lessard F; Ferbeyre G
    Cancer Res; 2019 Jul; 79(13):3306-3319. PubMed ID: 31101761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of SOCS1 silencing on proliferation and apoptosis of melanoma cells: An in vivo and in vitro study.
    Yu SJ; Long ZW
    Tumour Biol; 2017 May; 39(5):1010428317694315. PubMed ID: 28466787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TLR4 signaling in the development of colitis-associated cancer and its possible interplay with microRNA-155.
    Guo J; Liao M; Wang J
    Cell Commun Signal; 2021 Sep; 19(1):90. PubMed ID: 34479599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppressor of cytokine signaling 1-dependent regulation of the expression and oncogenic functions of p21(CIP1/WAF1) in the liver.
    Yeganeh M; Gui Y; Kandhi R; Bobbala D; Tobelaim WS; Saucier C; Yoshimura A; Ferbeyre G; Ramanathan S; Ilangumaran S
    Oncogene; 2016 Aug; 35(32):4200-11. PubMed ID: 26725321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SOX30, a novel epigenetic silenced tumor suppressor, promotes tumor cell apoptosis by transcriptional activating p53 in lung cancer.
    Han F; Liu W; Jiang X; Shi X; Yin L; Ao L; Cui Z; Li Y; Huang C; Cao J; Liu J
    Oncogene; 2015 Aug; 34(33):4391-402. PubMed ID: 25435374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA-29a induces loss of 5-hydroxymethylcytosine and promotes metastasis of hepatocellular carcinoma through a TET-SOCS1-MMP9 signaling axis.
    Chen Q; Yin D; Zhang Y; Yu L; Li XD; Zhou ZJ; Zhou SL; Gao DM; Hu J; Jin C; Wang Z; Shi YH; Cao Y; Fan J; Dai Z; Zhou J
    Cell Death Dis; 2017 Jun; 8(6):e2906. PubMed ID: 28661477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The SWI/SNF chromatin remodeling subunit BRG1 is a critical regulator of p53 necessary for proliferation of malignant cells.
    Naidu SR; Love IM; Imbalzano AN; Grossman SR; Androphy EJ
    Oncogene; 2009 Jul; 28(27):2492-501. PubMed ID: 19448667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic modification of TLR4 promotes activation of NF-κB by regulating methyl-CpG-binding domain protein 2 and Sp1 in gastric cancer.
    Kim TW; Lee SJ; Oh BM; Lee H; Uhm TG; Min JK; Park YJ; Yoon SR; Kim BY; Kim JW; Choe YK; Lee HG
    Oncotarget; 2016 Jan; 7(4):4195-209. PubMed ID: 26675260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of Casein kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells to tumor necrosis factor (TNFα)-induced apoptosis through SIRT1 inhibition.
    Dixit D; Sharma V; Ghosh S; Mehta VS; Sen E
    Cell Death Dis; 2012 Feb; 3(2):e271. PubMed ID: 22318540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.