BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33477033)

  • 1. Down regulation of U2AF1 promotes ARV7 splicing and prostate cancer progression.
    Cao H; Wang D; Gao R; Chen L; Feng Y
    Biochem Biophys Res Commun; 2021 Feb; 541():56-62. PubMed ID: 33477033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocadherin B9 promotes resistance to bicalutamide and is associated with the survival of prostate cancer patients.
    Sekino Y; Oue N; Mukai S; Shigematsu Y; Goto K; Sakamoto N; Sentani K; Hayashi T; Teishima J; Matsubara A; Yasui W
    Prostate; 2019 Feb; 79(2):234-242. PubMed ID: 30324761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Galectin-3 Is Implicated in Tumor Progression and Resistance to Anti-androgen Drug Through Regulation of Androgen Receptor Signaling in Prostate Cancer.
    Dondoo TO; Fukumori T; Daizumoto K; Fukawa T; Kohzuki M; Kowada M; Kusuhara Y; Mori H; Nakatsuji H; Takahashi M; Kanayama HO
    Anticancer Res; 2017 Jan; 37(1):125-134. PubMed ID: 28011482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interleukin-6 increases prostate cancer cells resistance to bicalutamide via TIF2.
    Feng S; Tang Q; Sun M; Chun JY; Evans CP; Gao AC
    Mol Cancer Ther; 2009 Mar; 8(3):665-71. PubMed ID: 19240160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the effect of the antiandrogen apalutamide (ARN-509) versus bicalutamide on the androgen receptor pathway in prostate cancer cell lines.
    Koukourakis MI; Kakouratos C; Kalamida D; Mitrakas A; Pouliliou S; Xanthopoulou E; Papadopoulou E; Fasoulaki V; Giatromanolaki A
    Anticancer Drugs; 2018 Apr; 29(4):323-333. PubMed ID: 29381490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dysregulation of miR-212 Promotes Castration Resistance through hnRNPH1-Mediated Regulation of AR and AR-V7: Implications for Racial Disparity of Prostate Cancer.
    Yang Y; Jia D; Kim H; Abd Elmageed ZY; Datta A; Davis R; Srivastav S; Moroz K; Crawford BE; Moparty K; Thomas R; Hudson RS; Ambs S; Abdel-Mageed AB
    Clin Cancer Res; 2016 Apr; 22(7):1744-56. PubMed ID: 26553749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The antiandrogen bicalutamide activates the androgen receptor (AR) with a mutation in codon 741 through the mitogen activated protein kinase (MARK) pathway in human prostate cancer PC3 cells.
    Terakawa T; Miyake H; Kumano M; Sakai I; Fujisawa M
    Oncol Rep; 2010 Nov; 24(5):1395-9. PubMed ID: 20878136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of curcumin and bicalutamide enhanced the growth inhibition of androgen-independent prostate cancer cells through SAPK/JNK and MEK/ERK1/2-mediated targeting NF-κB/p65 and MUC1-C.
    Li J; Xiang S; Zhang Q; Wu J; Tang Q; Zhou J; Yang L; Chen Z; Hann SS
    J Exp Clin Cancer Res; 2015 May; 34(1):46. PubMed ID: 25971429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Androgen Receptor and Its Splicing Variant 7 Expression in Peripheral Blood Mononuclear Cells and in Circulating Tumor Cells in Metastatic Castration-Resistant Prostate Cancer.
    Marín-Aguilera M; Jiménez N; Reig Ò; Montalbo R; Verma AK; Castellano G; Mengual L; Victoria I; Pereira MV; Milà-Guasch M; García-Recio S; Benítez-Ribas D; Cabezón R; González A; Juan M; Prat A; Mellado B
    Cells; 2020 Jan; 9(1):. PubMed ID: 31947623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic azacitidine treatment results in differentiating effects, sensitizes against bicalutamide in androgen-independent prostate cancer cells.
    Gravina GL; Festuccia C; Millimaggi D; Dolo V; Tombolini V; de Vito M; Vicentini C; Bologna M
    Prostate; 2008 May; 68(7):793-801. PubMed ID: 18324645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. T-LAK cell-originated protein kinase (TOPK) enhances androgen receptor splice variant (ARv7) and drives androgen-independent growth in prostate cancer.
    Alhawas L; Amin KS; Salla B; Banerjee PP
    Carcinogenesis; 2021 Apr; 42(3):423-435. PubMed ID: 33185682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishment and characterization of an androgen receptor-dependent, androgen-independent human prostate cancer cell line, LNCaP-CS10.
    Ishikura N; Kawata H; Nishimoto A; Nakamura R; Ishii N; Aoki Y
    Prostate; 2010 Apr; 70(5):457-66. PubMed ID: 19902465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural killer cells suppress enzalutamide resistance and cell invasion in the castration resistant prostate cancer via targeting the androgen receptor splicing variant 7 (ARv7).
    Lin SJ; Chou FJ; Li L; Lin CY; Yeh S; Chang C
    Cancer Lett; 2017 Jul; 398():62-69. PubMed ID: 28373004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antagonistic interaction between bicalutamide (Casodex) and radiation in androgen-positive prostate cancer LNCaP cells.
    Quéro L; Giocanti N; Hennequin C; Favaudon V
    Prostate; 2010 Mar; 70(4):401-11. PubMed ID: 19902473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metformin represses androgen-dependent and androgen-independent prostate cancers by targeting androgen receptor.
    Wang Y; Liu G; Tong D; Parmar H; Hasenmayer D; Yuan W; Zhang D; Jiang J
    Prostate; 2015 Aug; 75(11):1187-96. PubMed ID: 25894097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corepressive function of nuclear receptor coactivator 2 in androgen receptor of prostate cancer cells treated with antiandrogen.
    Takeda K; Hara N; Nishiyama T; Tasaki M; Ishizaki F; Tomita Y
    BMC Cancer; 2016 May; 16():332. PubMed ID: 27225190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of bicalutamide sensitivity in prostate cancer cells by an epigenetic Puralpha-mediated decrease in androgen receptor levels.
    Liu X; Gomez-Pinillos A; Liu X; Johnson EM; Ferrari AC
    Prostate; 2010 Feb; 70(2):179-89. PubMed ID: 19790234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silencing of PMEPA1 accelerates the growth of prostate cancer cells through AR, NEDD4 and PTEN.
    Li H; Mohamed AA; Sharad S; Umeda E; Song Y; Young D; Petrovics G; McLeod DG; Sesterhenn IA; Sreenath T; Dobi A; Srivastava S
    Oncotarget; 2015 Jun; 6(17):15137-49. PubMed ID: 25883222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hormonal regulation of beta2-adrenergic receptor level in prostate cancer.
    Ramberg H; Eide T; Krobert KA; Levy FO; Dizeyi N; Bjartell AS; Abrahamsson PA; Taskén KA
    Prostate; 2008 Jul; 68(10):1133-42. PubMed ID: 18454446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear Receptor Corepressor 1 Expression and Output Declines with Prostate Cancer Progression.
    Lopez SM; Agoulnik AI; Zhang M; Peterson LE; Suarez E; Gandarillas GA; Frolov A; Li R; Rajapakshe K; Coarfa C; Ittmann MM; Weigel NL; Agoulnik IU
    Clin Cancer Res; 2016 Aug; 22(15):3937-49. PubMed ID: 26968201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.