BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33477473)

  • 1. Non-Pathological Opacification of the Cavernous Sinus on Brain CT Angiography: Comparison with Flow-Related Signal Intensity on Time-of-Flight MR Angiography.
    Heo SA; Kim ES; Lee Y; Lee SM; Lee K; Yoon DY; Ju YS; Kwon MJ
    Healthcare (Basel); 2021 Jan; 9(1):. PubMed ID: 33477473
    [No Abstract]   [Full Text] [Related]  

  • 2. High-resolution compressed sensing time-of-flight MR angiography outperforms CT angiography for evaluating patients with Moyamoya disease after surgical revascularization.
    Ren S; Wu W; Su C; Zhu Q; Schmidt M; Sun Y; Forman C; Speier P; Hong X; Lu S
    BMC Med Imaging; 2022 Apr; 22(1):64. PubMed ID: 35387607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normal flow signal of the pterygoid plexus on 3T MRA in patients without DAVF of the cavernous sinus.
    Watanabe K; Kakeda S; Watanabe R; Ohnari N; Korogi Y
    AJNR Am J Neuroradiol; 2013; 34(6):1232-6. PubMed ID: 23275595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MRI and MR angiography findings to differentiate jugular venous reflux from cavernous dural arteriovenous fistula.
    Kim E; Kim JH; Choi BS; Jung C; Lee DH
    AJR Am J Roentgenol; 2014 Apr; 202(4):839-46. PubMed ID: 24660714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-invasive angiographic analysis of dural carotid cavernous fistula using time-of-flight MR angiography and silent MR angiography: a comparative study.
    Kandasamy S; Kannath SK; Enakshy Rajana J; Kesavadas C; Thomas B
    Acta Radiol; 2023 Mar; 64(3):1290-1297. PubMed ID: 35532027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of cerebral arteriovenous shunts: a comparison of parallel imaging time-of-flight magnetic resonance angiography (TOF-MRA) and compressed sensing TOF-MRA to digital subtraction angiography.
    Sakata A; Fushimi Y; Okada T; Nakajima S; Hinoda T; Speier P; Schmidt M; Forman C; Yoshida K; Kataoka H; Miyamoto S; Nakamoto Y
    Neuroradiology; 2021 Jun; 63(6):879-887. PubMed ID: 33063222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly accelerated time-of-flight magnetic resonance angiography using spiral imaging improves conspicuity of intracranial arterial branches while reducing scan time.
    Greve T; Sollmann N; Hock A; Hey S; Gnanaprakasam V; Nijenhuis M; Zimmer C; Kirschke JS
    Eur Radiol; 2020 Feb; 30(2):855-865. PubMed ID: 31664504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CT angiography and MR angiography in the evaluation of carotid cavernous sinus fistula prior to embolization: a comparison of techniques.
    Chen CC; Chang PC; Shy CG; Chen WS; Hung HC
    AJNR Am J Neuroradiol; 2005 Oct; 26(9):2349-56. PubMed ID: 16219844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic Resonance Angiography in the Diagnosis of Cerebral Arteriovenous Malformation and Dural Arteriovenous Fistulas: Comparison of Time-Resolved Magnetic Resonance Angiography and Three Dimensional Time-of-Flight Magnetic Resonance Angiography.
    Cheng YC; Chen HC; Wu CH; Wu YY; Sun MH; Chen WH; Chai JW; Chi-Chang Chen C
    Iran J Radiol; 2016 Apr; 13(2):e19814. PubMed ID: 27679690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional spin-echo-based black-blood MRA in the detection of vasospasm following subarachnoid hemorrhage.
    Takano K; Hida K; Iwaasa M; Inoue T; Yoshimitsu K
    J Magn Reson Imaging; 2019 Mar; 49(3):800-807. PubMed ID: 30284331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paradoxical parasellar high signals resembling shunt diseases on routine 3D time-of-flight MR angiography of the brain: mechanism for the signals and differential diagnosis from shunt diseases.
    Sakamoto M; Taoka T; Iwasaki S; Nakagawa H; Fukusumi A; Takayama K; Wada T; Kichikawa K
    Magn Reson Imaging; 2004 Nov; 22(9):1289-93. PubMed ID: 15607100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution 3D volumetric contrast-enhanced MR angiography with a blood pool agent (ferumoxytol) for diagnostic evaluation of pediatric brain arteriovenous malformations.
    Iv M; Choudhri O; Dodd RL; Vasanawala SS; Alley MT; Moseley M; Holdsworth SJ; Grant G; Cheshier S; Yeom KW
    J Neurosurg Pediatr; 2018 Sep; 22(3):251-260. PubMed ID: 29882734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracranial dural arteriovenous fistulas: evaluation with combined 3D time-of-flight MR angiography and MR digital subtraction angiography.
    Noguchi K; Melhem ER; Kanazawa T; Kubo M; Kuwayama N; Seto H
    AJR Am J Roentgenol; 2004 Jan; 182(1):183-90. PubMed ID: 14684537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Intracranial Dural Arteriovenous Fistulas: Comparison of Unenhanced 3T 3D Time-of-flight MR Angiography with Digital Subtraction Angiography.
    Azuma M; Hirai T; Shigematsu Y; Kitajima M; Kai Y; Yano S; Nakamura H; Makino K; Iryo Y; Yamashita Y
    Magn Reson Med Sci; 2015; 14(4):285-93. PubMed ID: 25994036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3 T contrast-enhanced magnetic resonance angiography for evaluation of the intracranial arteries: comparison with time-of-flight magnetic resonance angiography and multislice computed tomography angiography.
    Villablanca JP; Nael K; Habibi R; Nael A; Laub G; Finn JP
    Invest Radiol; 2006 Nov; 41(11):799-805. PubMed ID: 17035870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surveillance imaging after intracranial stent implantation: non-invasive imaging compared with digital subtraction angiography.
    Golshani B; Lazzaro MA; Raslau F; Darkhabani Z; Baruah D; Eastwood D; Fitzsimmons BF; Zaidat OO
    J Neurointerv Surg; 2013 Jul; 5(4):361-5. PubMed ID: 22641863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of Noncontrast Quiescent-Interval Single-Shot Lower Extremity MR Angiography Versus CT Angiography for Diagnosis of Peripheral Artery Disease: Comparison With Digital Subtraction Angiography.
    Varga-Szemes A; Wichmann JL; Schoepf UJ; Suranyi P; De Cecco CN; Muscogiuri G; Caruso D; Yamada RT; Litwin SE; Tesche C; Duguay TM; Giri S; Vliegenthart R; Todoran TM
    JACC Cardiovasc Imaging; 2017 Oct; 10(10 Pt A):1116-1124. PubMed ID: 28109932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance imaging as a single diagnostic tool for verifying radiosurgery outcomes of cavernous sinus dural arteriovenous fistula.
    Hu YS; Guo WY; Lin CJ; Wu HM; Luo CB; Wu CA; Lee CC; Yang HC; Liu KD; Chung WY
    Eur J Radiol; 2020 Apr; 125():108866. PubMed ID: 32065928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pre-Procedural Assessment of the Femoral Access Route for Transcatheter Aortic Valve Implantation: Comparison of a Non-Contrast Time-of-Flight Magnetic Resonance Angiography Protocol with Contrast-Enhanced Dual-Source Computed Tomography Angiography.
    Brado J; Breitbart P; Hein M; Pache G; Schmitt R; Hein J; Apweiler M; Soschynski M; Schlett C; Bamberg F; Neumann FJ; Westermann D; Krauss T; Ruile P
    J Clin Med; 2023 Oct; 12(21):. PubMed ID: 37959289
    [No Abstract]   [Full Text] [Related]  

  • 20. Time-of-flight MR angiography at 3T versus digital subtraction angiography in the imaging follow-up of 51 intracranial aneurysms treated with coils.
    Ferré JC; Carsin-Nicol B; Morandi X; Carsin M; de Kersaint-Gilly A; Gauvrit JY; Desal HA
    Eur J Radiol; 2009 Dec; 72(3):365-9. PubMed ID: 18809272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.