These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 33477542)
1. Dissecting the Polygenic Basis of Cold Adaptation Using Genome-Wide Association of Traits and Environmental Data in Douglas-fir. De La Torre AR; Wilhite B; Puiu D; St Clair JB; Crepeau MW; Salzberg SL; Langley CH; Allen B; Neale DB Genes (Basel); 2021 Jan; 12(1):. PubMed ID: 33477542 [TBL] [Abstract][Full Text] [Related]
2. A catalogue of putative unique transcripts from Douglas-fir (Pseudotsuga menziesii) based on 454 transcriptome sequencing of genetically diverse, drought stressed seedlings. Müller T; Ensminger I; Schmid KJ BMC Genomics; 2012 Nov; 13():673. PubMed ID: 23190494 [TBL] [Abstract][Full Text] [Related]
3. Association genetics of coastal Douglas fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-hardiness related traits. Eckert AJ; Bower AD; Wegrzyn JL; Pande B; Jermstad KD; Krutovsky KV; St Clair JB; Neale DB Genetics; 2009 Aug; 182(4):1289-302. PubMed ID: 19487566 [TBL] [Abstract][Full Text] [Related]
4. Multilocus patterns of nucleotide diversity and divergence reveal positive selection at candidate genes related to cold hardiness in coastal Douglas Fir (Pseudotsuga menziesii var. menziesii). Eckert AJ; Wegrzyn JL; Pande B; Jermstad KD; Lee JM; Liechty JD; Tearse BR; Krutovsky KV; Neale DB Genetics; 2009 Sep; 183(1):289-98. PubMed ID: 19596906 [TBL] [Abstract][Full Text] [Related]
5. An Axiom SNP genotyping array for Douglas-fir. Howe GT; Jayawickrama K; Kolpak SE; Kling J; Trappe M; Hipkins V; Ye T; Guida S; Cronn R; Cushman SA; McEvoy S BMC Genomics; 2020 Jan; 21(1):9. PubMed ID: 31900111 [TBL] [Abstract][Full Text] [Related]
6. Impact of climate change on cold hardiness of Douglas-fir (Pseudotsuga menziesii): environmental and genetic considerations. Bansal S; St Clair JB; Harrington CA; Gould PJ Glob Chang Biol; 2015 Oct; 21(10):3814-26. PubMed ID: 25920066 [TBL] [Abstract][Full Text] [Related]
7. Nucleotide diversity and linkage disequilibrium in cold-hardiness- and wood quality-related candidate genes in Douglas fir. Krutovsky KV; Neale DB Genetics; 2005 Dec; 171(4):2029-41. PubMed ID: 16157674 [TBL] [Abstract][Full Text] [Related]
8. A long-read and short-read transcriptomics approach provides the first high-quality reference transcriptome and genome annotation for Pseudotsuga menziesii (Douglas-fir). Velasco VME; Ferreira A; Zaman S; Noordermeer D; Ensminger I; Wegrzyn JL G3 (Bethesda); 2023 Feb; 13(2):. PubMed ID: 36454025 [TBL] [Abstract][Full Text] [Related]
9. Tolerance to multiple climate stressors: a case study of Douglas-fir drought and cold hardiness. Bansal S; Harrington CA; St Clair JB Ecol Evol; 2016 Apr; 6(7):2074-83. PubMed ID: 27099710 [TBL] [Abstract][Full Text] [Related]
10. A SNP resource for Douglas-fir: de novo transcriptome assembly and SNP detection and validation. Howe GT; Yu J; Knaus B; Cronn R; Kolpak S; Dolan P; Lorenz WW; Dean JF BMC Genomics; 2013 Feb; 14():137. PubMed ID: 23445355 [TBL] [Abstract][Full Text] [Related]
11. Genetic architecture of disease resistance and tolerance in Douglas-fir trees. Singh P; St Clair JB; Lind BM; Cronn R; Wilhelmi NP; Feau N; Lu M; Vidakovic DO; Hamelin RC; Shaw DC; Aitken SN; Yeaman S New Phytol; 2024 Jul; 243(2):705-719. PubMed ID: 38803110 [TBL] [Abstract][Full Text] [Related]
12. Photoperiod cues and patterns of genetic variation limit phenological responses to climate change in warm parts of species' range: Modeling diameter-growth cessation in coast Douglas-fir. Ford KR; Harrington CA; St Clair JB Glob Chang Biol; 2017 Aug; 23(8):3348-3362. PubMed ID: 28303652 [TBL] [Abstract][Full Text] [Related]
13. Genecology of Douglas fir in western Oregon and Washington. St Clair JB; Mandel NL; Vance-Borland KW Ann Bot; 2005 Dec; 96(7):1199-214. PubMed ID: 16246849 [TBL] [Abstract][Full Text] [Related]
14. Comprehensive Organ-Specific Profiling of Douglas Fir ( Teyssier C; Rogier O; Claverol S; Gautier F; Lelu-Walter MA; Duruflé H Biomolecules; 2023 Sep; 13(9):. PubMed ID: 37759800 [TBL] [Abstract][Full Text] [Related]
16. Introduction of non-native Douglas fir reduces leaf damage on beech saplings and mature trees in European beech forests. Matevski D; Foltran E; Lamersdorf N; Schuldt A Ecol Appl; 2023 Mar; 33(2):e2786. PubMed ID: 36477972 [TBL] [Abstract][Full Text] [Related]
17. Environmental Genome-Wide Association Reveals Climate Adaptation Is Shaped by Subtle to Moderate Allele Frequency Shifts in Loblolly Pine. De La Torre AR; Wilhite B; Neale DB Genome Biol Evol; 2019 Oct; 11(10):2976-2989. PubMed ID: 31599932 [TBL] [Abstract][Full Text] [Related]
18. Looking for the needle in a downsized haystack: Whole-exome sequencing unravels genomic signals of climatic adaptation in Douglas-fir ( George JP; Schueler S; Grabner M; Karanitsch-Ackerl S; Mayer K; Stierschneider M; Weissenbacher L; van Loo M Ecol Evol; 2021 Jun; 11(12):8238-8253. PubMed ID: 34188883 [TBL] [Abstract][Full Text] [Related]
19. Will changes in phenology track climate change? A study of growth initiation timing in coast Douglas-fir. Ford KR; Harrington CA; Bansal S; Gould PJ; St Clair JB Glob Chang Biol; 2016 Nov; 22(11):3712-3723. PubMed ID: 27104650 [TBL] [Abstract][Full Text] [Related]
20. Spatially heterogeneous selection and inter-varietal differentiation maintain population structure and local adaptation in a widespread conifer. Peláez P; Lorenzana GP; Baesen K; Montes JR; De La Torre AR BMC Ecol Evol; 2024 Sep; 24(1):117. PubMed ID: 39227766 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]