BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33477546)

  • 1. The Role of Polyphosphate in Motility, Adhesion, and Biofilm Formation in
    Recalde A; van Wolferen M; Sivabalasarma S; Albers SV; Navarro CA; Jerez CA
    Microorganisms; 2021 Jan; 9(1):. PubMed ID: 33477546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global effect of the lack of inorganic polyphosphate in the extremophilic archaeon Sulfolobus solfataricus: A proteomic approach.
    Soto DF; Recalde A; Orell A; Albers SV; Paradela A; Navarro CA; Jerez CA
    J Proteomics; 2019 Jan; 191():143-152. PubMed ID: 29501848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The exopolyphosphatase gene from sulfolobus solfataricus: characterization of the first gene found to be involved in polyphosphate metabolism in archaea.
    Cardona ST; Chávez FP; Jerez CA
    Appl Environ Microbiol; 2002 Oct; 68(10):4812-9. PubMed ID: 12324325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stay or Go: Sulfolobales Biofilm Dispersal Is Dependent on a Bifunctional VapB Antitoxin.
    Lewis AM; Willard DJ; H Manesh MJ; Sivabalasarma S; Albers SV; Kelly RM
    mBio; 2023 Apr; 14(2):e0005323. PubMed ID: 37036347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyphosphate deficiency affects the sliding motility and biofilm formation of Mycobacterium smegmatis.
    Shi T; Fu T; Xie J
    Curr Microbiol; 2011 Nov; 63(5):470-6. PubMed ID: 21882007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism.
    Remonsellez F; Orell A; Jerez CA
    Microbiology (Reading); 2006 Jan; 152(Pt 1):59-66. PubMed ID: 16385115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expanding the archaellum regulatory network - the eukaryotic protein kinases ArnC and ArnD influence motility of Sulfolobus acidocaldarius.
    Hoffmann L; Schummer A; Reimann J; Haurat MF; Wilson AJ; Beeby M; Warscheid B; Albers SV
    Microbiologyopen; 2017 Feb; 6(1):. PubMed ID: 27771939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sessile Lifestyle Offers Protection against Copper Stress in
    Recalde A; González-Madrid G; Acevedo-López J; Jerez CA
    Microorganisms; 2023 May; 11(6):. PubMed ID: 37374923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A genetically validated approach for detecting inorganic polyphosphates in plants.
    Zhu J; Loubéry S; Broger L; Zhang Y; Lorenzo-Orts L; Utz-Pugin A; Fernie AR; Young-Tae C; Hothorn M
    Plant J; 2020 May; 102(3):507-516. PubMed ID: 31816134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-Glycosylation of the archaellum filament is not important for archaella assembly and motility, although N-Glycosylation is essential for motility in Sulfolobus acidocaldarius.
    Meyer BH; Birich A; Albers SV
    Biochimie; 2015 Nov; 118():294-301. PubMed ID: 25447136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constitutive and regulated expression vectors to construct polyphosphate deficient bacteria.
    Chávez FP; Mauriaca C; Jerez CA
    BMC Res Notes; 2009 Mar; 2():50. PubMed ID: 19323822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into the in situ microscopic visualization and quantification of inorganic polyphosphate stores by 4',6-diamidino-2-phenylindole (DAPI)-staining.
    Gomes FM; Ramos IB; Wendt C; Girard-Dias W; De Souza W; Machado EA; Miranda K
    Eur J Histochem; 2013 Nov; 57(4):e34. PubMed ID: 24441187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saccharolobus caldissimus gen. nov., sp. nov., a facultatively anaerobic iron-reducing hyperthermophilic archaeon isolated from an acidic terrestrial hot spring, and reclassification of Sulfolobus solfataricus as Saccharolobus solfataricus comb. nov. and Sulfolobus shibatae as Saccharolobus shibatae comb. nov.
    Sakai HD; Kurosawa N
    Int J Syst Evol Microbiol; 2018 Apr; 68(4):1271-1278. PubMed ID: 29485400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Progress in polyphosphate and related metabolizing enzymes].
    Shi TY; Wang HL; Xie JP
    Sheng Li Ke Xue Jin Zhan; 2011 Jun; 42(3):181-7. PubMed ID: 21932515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymes of inorganic polyphosphate metabolism.
    Kulakovskaya T; Kulaev I
    Prog Mol Subcell Biol; 2013; 54():39-63. PubMed ID: 24420710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ArnS, a kinase involved in starvation-induced archaellum expression.
    Haurat MF; Figueiredo AS; Hoffmann L; Li L; Herr K; J Wilson A; Beeby M; Schaber J; Albers SV
    Mol Microbiol; 2017 Jan; 103(1):181-194. PubMed ID: 27731916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inorganic Polyphosphate, Exopolyphosphatase, and
    Rivero M; Torres-Paris C; Muñoz R; Cabrera R; Navarro CA; Jerez CA
    Archaea; 2018; 2018():5251061. PubMed ID: 29692683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct quantification of inorganic polyphosphate in microbial cells using 4'-6-diamidino-2-phenylindole (DAPI).
    Kulakova AN; Hobbs D; Smithen M; Pavlov E; Gilbert JA; Quinn JP; McGrath JW
    Environ Sci Technol; 2011 Sep; 45(18):7799-803. PubMed ID: 21875055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functions of inorganic polyphosphates in eukaryotic cells: a coat of many colours.
    Azevedo C; Saiardi A
    Biochem Soc Trans; 2014 Feb; 42(1):98-102. PubMed ID: 24450634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inorganic polyphosphate interacts with nucleolar and glycosomal proteins in trypanosomatids.
    Negreiros RS; Lander N; Huang G; Cordeiro CD; Smith SA; Morrissey JH; Docampo R
    Mol Microbiol; 2018 Dec; 110(6):973-994. PubMed ID: 30230089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.