BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 334776)

  • 1. Asymmetry of binding and physical assignments of CTP and ATP sites in aspartate transcarbamoylase.
    Suter P; Rosenbusch JP
    J Biol Chem; 1977 Nov; 252(22):8136-41. PubMed ID: 334776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lysine-60 in the regulatory chain of Escherichia coli aspartate transcarbamoylase is important for the discrimination between CTP and ATP.
    Zhang Y; Kantrowitz ER
    Biochemistry; 1989 Sep; 28(18):7313-8. PubMed ID: 2510822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperative binding of the bisubstrate analog N-(phosphonacetyl)-L-aspartate to aspartate transcarbamoylase and the heterotropic effects of ATP and CTP.
    Newell JO; Markby DW; Schachman HK
    J Biol Chem; 1989 Feb; 264(5):2476-81. PubMed ID: 2644262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Communication between dissimilar subunits in aspartate transcarbamoylase: effect of inhibitor and activator on the conformation of the catalytic polypeptide chains.
    Hensley P; Schachman HK
    Proc Natl Acad Sci U S A; 1979 Aug; 76(8):3732-6. PubMed ID: 386346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Threonine 82 in the regulatory chain is important for nucleotide affinity and for the allosteric stabilization of Escherichia coli aspartate transcarbamoylase.
    Williams MK; Kantrowitz ER
    Biochim Biophys Acta; 1998 Dec; 1429(1):249-58. PubMed ID: 9920401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural asymmetry in the CTP-liganded form of aspartate carbamoyltransferase from Escherichia coli.
    Kim KH; Pan ZX; Honzatko RB; Ke HM; Lipscomb WN
    J Mol Biol; 1987 Aug; 196(4):853-75. PubMed ID: 3316665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural consequences of effector binding to the T state of aspartate carbamoyltransferase: crystal structures of the unligated and ATP- and CTP-complexed enzymes at 2.6-A resolution.
    Stevens RC; Gouaux JE; Lipscomb WN
    Biochemistry; 1990 Aug; 29(33):7691-701. PubMed ID: 2271528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid aspartate transcarbamoylase containing cross-linked subunits.
    Chan WW; Enns CA
    Can J Biochem; 1981 Jun; 59(6):461-8. PubMed ID: 7028218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of hybrid aspartate transcarbamoylase formed with native subunits from divergent bacteria.
    Shanley MS; Foltermann KF; O'Donovan GA; Wild JR
    J Biol Chem; 1984 Oct; 259(20):12672-7. PubMed ID: 6386799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutagenesis of a residue located in the regulatory site of Escherichia coli aspartate transcarbamoylase. Involvement of lysine 94 in effector binding and the allosteric mechanism.
    Zhang Y; Ladjimi MM; Kantrowitz ER
    J Biol Chem; 1988 Jan; 263(3):1320-4. PubMed ID: 3121627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP-liganded form of aspartate transcarbamoylase, the logical regulatory target for allosteric control in divergent bacterial systems.
    Wild JR; Johnson JL; Loughrey SJ
    J Bacteriol; 1988 Jan; 170(1):446-8. PubMed ID: 3275626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the regulatory site of Escherichia coli aspartate transcarbamoylase by site-specific mutagenesis.
    Zhang Y; Kantrowitz ER
    Biochemistry; 1992 Jan; 31(3):792-8. PubMed ID: 1731936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneity of sites in isolated catalytic subunits of aspartate transcarbamoylase.
    Suter P; Rosenbusch JP
    Eur J Biochem; 1976 Nov; 70(1):191-6. PubMed ID: 795648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The N-terminus of the regulatory chain of Escherichia coli aspartate transcarbamoylase is important for both nucleotide binding and heterotropic effects.
    Sakash JB; Kantrowitz ER
    Biochemistry; 1998 Jan; 37(1):281-8. PubMed ID: 9425049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divergent allosteric patterns verify the regulatory paradigm for aspartate transcarbamylase.
    Wales ME; Madison LL; Glaser SS; Wild JR
    J Mol Biol; 1999 Dec; 294(5):1387-400. PubMed ID: 10600393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Communication between catalytic subunits in hybrid aspartate transcarbamoylase molecules: effect of ligand binding to active chains on the conformation of unliganded, inactive chains.
    Yang YR; Schachman HK
    Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5187-91. PubMed ID: 6933552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homotropic effects in aspartate transcarbamoylase. What happens when the enzyme binds a single molecule of the bisubstrate analog N-phosphonacetyl-L-aspartate?
    Foote J; Schachman HK
    J Mol Biol; 1985 Nov; 186(1):175-84. PubMed ID: 3908690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effectors of Escherichia coli aspartate transcarbamoylase differentially perturb aspartate binding rather than the T-R transition.
    Hsuanyu YC; Wedler FC
    J Biol Chem; 1988 Mar; 263(9):4172-81. PubMed ID: 3279030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Communication between polypeptide chains in aspartate transcarbamoylase. Conformational changes at the active sites of unliganded chains resulting from ligand binding to other chains.
    Lahue RS; Schachman HK
    J Biol Chem; 1986 Mar; 261(7):3079-84. PubMed ID: 3512547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aspartate transcarbamoylase: loss of homotropic but not heterotropic interactions upon modification of the catalytic subunit with a bifunctional reagent.
    Chan WW; Enns CA
    Can J Biochem; 1979 Jun; 57(6):798-805. PubMed ID: 383237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.