These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 33477600)
1. Design of Variable Spray System for Plant Protection UAV Based on CFD Simulation and Regression Analysis. Ni M; Wang H; Liu X; Liao Y; Fu L; Wu Q; Mu J; Chen X; Li J Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477600 [TBL] [Abstract][Full Text] [Related]
2. Design of Plant Protection UAV Variable Spray System Based on Neural Networks. Wen S; Zhang Q; Yin X; Lan Y; Zhang J; Ge Y Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30841563 [TBL] [Abstract][Full Text] [Related]
3. Droplet Deposition Distribution Prediction Method for a Six-Rotor Plant Protection UAV Based on Inverse Distance Weighting. Wang B; Zhang Y; Wang C; Teng G Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236524 [TBL] [Abstract][Full Text] [Related]
4. Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard. Wang C; Herbst A; Zeng A; Wongsuk S; Qiao B; Qi P; Bonds J; Overbeck V; Yang Y; Gao W; He X Sci Total Environ; 2021 Jul; 777():146181. PubMed ID: 33689892 [TBL] [Abstract][Full Text] [Related]
5. Design of UAV Downwash Airflow Field Detection System Based on Strain Effect Principle. Wu Y; Qi L; Zhang H; Musiu EM; Yang Z; Wang P Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31185638 [TBL] [Abstract][Full Text] [Related]
6. Spray performance and control efficacy against pests in paddy rice by UAV-based pesticide application: effects of atomization, UAV configuration and flight velocity. Wongsuk S; Qi P; Wang C; Zeng A; Sun F; Yu F; Zhao X; Xiongkui H Pest Manag Sci; 2024 Apr; 80(4):2072-2084. PubMed ID: 38129096 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the research progress on the deposition and drift of spray droplets by plant protection UAVs. Weicai Q; Panyang C Sci Rep; 2023 Sep; 13(1):14935. PubMed ID: 37696849 [TBL] [Abstract][Full Text] [Related]
8. Research on a UAV spray system combined with grid atomized droplets. Xue X; Tian Y; Yang Z; Li Z; Lyu S; Song S; Sun D Front Plant Sci; 2023; 14():1286332. PubMed ID: 38235193 [TBL] [Abstract][Full Text] [Related]
9. Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer. Wang G; Han Y; Li X; Andaloro J; Chen P; Hoffmann WC; Han X; Chen S; Lan Y Sci Total Environ; 2020 Oct; 737():139793. PubMed ID: 32526578 [TBL] [Abstract][Full Text] [Related]
10. Numerical simulation and verification of rotor downwash flow field of plant protection UAV at different rotor speeds. Chang K; Chen S; Wang M; Xue X; Lan Y Front Plant Sci; 2022; 13():1087636. PubMed ID: 36777541 [TBL] [Abstract][Full Text] [Related]
11. Research on Methods Decreasing Pesticide Waste Based on Plant Protection Unmanned Aerial Vehicles: A Review. Hu H; Kaizu Y; Huang J; Furuhashi K; Zhang H; Li M; Imou K Front Plant Sci; 2022; 13():811256. PubMed ID: 35873963 [TBL] [Abstract][Full Text] [Related]
12. Swath pattern analysis from a multi-rotor unmanned aerial vehicle configured for pesticide application. Richardson B; Rolando CA; Somchit C; Dunker C; Strand TM; Kimberley MO Pest Manag Sci; 2020 Apr; 76(4):1282-1290. PubMed ID: 31595645 [TBL] [Abstract][Full Text] [Related]
13. CFD-based pesticide selection for a nozzle used in a six-rotor UAV in hover mode for tea spraying. Dong SJ; Gui QH; Zhu L; Zou XR; Zhou WX; Hou RY; Moray PJ; Yin CL Pest Manag Sci; 2023 May; 79(5):1963-1976. PubMed ID: 36680499 [TBL] [Abstract][Full Text] [Related]
14. Effect of the entrained air and initial droplet velocity on the release height parameter of a Gaussian spray drift model. Stainier C; Destain MF; Schiffers B; Lebeau F Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):197-200. PubMed ID: 17390793 [TBL] [Abstract][Full Text] [Related]
15. Field evaluation of an unmanned aerial vehicle (UAV) sprayer: effect of spray volume on deposition and the control of pests and disease in wheat. Wang G; Lan Y; Qi H; Chen P; Hewitt A; Han Y Pest Manag Sci; 2019 Jun; 75(6):1546-1555. PubMed ID: 30620130 [TBL] [Abstract][Full Text] [Related]
16. Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard. Li L; Hu Z; Liu Q; Yi T; Han P; Zhang R; Pan L Front Plant Sci; 2022; 13():981494. PubMed ID: 36247584 [TBL] [Abstract][Full Text] [Related]
17. Field evaluation of spray drift and nontargeted soybean injury from unmanned aerial spraying system herbicide application under acceptable operation conditions. Huang Z; Wang C; Li Y; Zhang H; Zeng A; He X Pest Manag Sci; 2023 Mar; 79(3):1140-1153. PubMed ID: 36349383 [TBL] [Abstract][Full Text] [Related]
18. Downwash characteristics and analysis from a six-rotor unmanned aerial vehicle configured for plant protection. Yang S; Xu P; Jiang S; Zheng Y Pest Manag Sci; 2022 Apr; 78(4):1707-1720. PubMed ID: 34994501 [TBL] [Abstract][Full Text] [Related]
19. UAV-spray application in vineyards: Flight modes and spray system adjustment effects on canopy deposit, coverage, and off-target losses. Biglia A; Grella M; Bloise N; Comba L; Mozzanini E; Sopegno A; Pittarello M; Dicembrini E; Alcatrão LE; Guglieri G; Balsari P; Aimonino DR; Gay P Sci Total Environ; 2022 Nov; 845():157292. PubMed ID: 35820523 [TBL] [Abstract][Full Text] [Related]
20. WSN-Assisted UAV Trajectory Adjustment for Pesticide Drift Control. Hu J; Wang T; Yang J; Lan Y; Lv S; Zhang Y Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32987849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]