BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

507 related articles for article (PubMed ID: 33477877)

  • 1. Roles of HIF and 2-Oxoglutarate-Dependent Dioxygenases in Controlling Gene Expression in Hypoxia.
    Frost J; Frost M; Batie M; Jiang H; Rocha S
    Cancers (Basel); 2021 Jan; 13(2):. PubMed ID: 33477877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxia and Oxygen-Sensing Signaling in Gene Regulation and Cancer Progression.
    Yang G; Shi R; Zhang Q
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33142830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic Regulation of Hypoxia-Inducible Transcription Factors: The Role of Small Molecule Metabolites and Iron.
    Bailey PSJ; Nathan JA
    Biomedicines; 2018 May; 6(2):. PubMed ID: 29772792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxia-inducible factor-1 (HIF-1) promotes its degradation by induction of HIF-alpha-prolyl-4-hydroxylases.
    Marxsen JH; Stengel P; Doege K; Heikkinen P; Jokilehto T; Wagner T; Jelkmann W; Jaakkola P; Metzen E
    Biochem J; 2004 Aug; 381(Pt 3):761-7. PubMed ID: 15104534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxia-induced erythropoietin production: a paradigm for oxygen-regulated gene expression.
    Stockmann C; Fandrey J
    Clin Exp Pharmacol Physiol; 2006 Oct; 33(10):968-79. PubMed ID: 17002676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic analysis of the role of the asparaginyl hydroxylase factor inhibiting hypoxia-inducible factor (FIH) in regulating hypoxia-inducible factor (HIF) transcriptional target genes [corrected].
    Stolze IP; Tian YM; Appelhoff RJ; Turley H; Wykoff CC; Gleadle JM; Ratcliffe PJ
    J Biol Chem; 2004 Oct; 279(41):42719-25. PubMed ID: 15302861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of iron (II)-2-oxoglutarate-dependent dioxygenases in the generation of hypoxia-induced phosphatidic acid through HIF-1/2 and von Hippel-Lindau-independent mechanisms.
    Martín-Puig S; Temes E; Olmos G; Jones DR; Aragonés J; Landázuri MO
    J Biol Chem; 2004 Mar; 279(10):9504-11. PubMed ID: 14681229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor.
    Appelhoff RJ; Tian YM; Raval RR; Turley H; Harris AL; Pugh CW; Ratcliffe PJ; Gleadle JM
    J Biol Chem; 2004 Sep; 279(37):38458-65. PubMed ID: 15247232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of hypoxia-inducible factor 1alpha (HIF-1alpha) transcriptional activity by the HIF prolyl hydroxylase EGLN1.
    To KK; Huang LE
    J Biol Chem; 2005 Nov; 280(45):38102-7. PubMed ID: 16157596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1alpha, HIF-2alpha, and other pathways.
    Elvidge GP; Glenny L; Appelhoff RJ; Ratcliffe PJ; Ragoussis J; Gleadle JM
    J Biol Chem; 2006 Jun; 281(22):15215-26. PubMed ID: 16565084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular oxygen sensing need in CNS function: physiological and pathological implications.
    Acker T; Acker H
    J Exp Biol; 2004 Aug; 207(Pt 18):3171-88. PubMed ID: 15299039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of HIF: prolyl hydroxylases.
    Stolze IP; Mole DR; Ratcliffe PJ
    Novartis Found Symp; 2006; 272():15-25; discussion 25-36. PubMed ID: 16686427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic characterization and identification of a novel inhibitor of hypoxia-inducible factor prolyl hydroxylase 2 using a time-resolved fluorescence resonance energy transfer-based assay technology.
    Dao JH; Kurzeja RJ; Morachis JM; Veith H; Lewis J; Yu V; Tegley CM; Tagari P
    Anal Biochem; 2009 Jan; 384(2):213-23. PubMed ID: 18952043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypoxia-Inducible Factor α and Hif-prolyl Hydroxylase Characterization and Gene Expression in Short-Time Air-Exposed Mytilus galloprovincialis.
    Giannetto A; Maisano M; Cappello T; Oliva S; Parrino V; Natalotto A; De Marco G; Barberi C; Romeo O; Mauceri A; Fasulo S
    Mar Biotechnol (NY); 2015 Dec; 17(6):768-81. PubMed ID: 26277612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin as an oxygen sensor and active player in the hypoxia response.
    Melvin A; Rocha S
    Cell Signal; 2012 Jan; 24(1):35-43. PubMed ID: 21924352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases.
    Koivunen P; Hirsilä M; Günzler V; Kivirikko KI; Myllyharju J
    J Biol Chem; 2004 Mar; 279(11):9899-904. PubMed ID: 14701857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prolyl hydroxylase domain enzymes: important regulators of cancer metabolism.
    Yang M; Su H; Soga T; Kranc KR; Pollard PJ
    Hypoxia (Auckl); 2014; 2():127-142. PubMed ID: 27774472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endogenous 2-oxoacids differentially regulate expression of oxygen sensors.
    Dalgard CL; Lu H; Mohyeldin A; Verma A
    Biochem J; 2004 Jun; 380(Pt 2):419-24. PubMed ID: 14984367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process.
    Salminen A; Kauppinen A; Kaarniranta K
    Cell Mol Life Sci; 2015 Oct; 72(20):3897-914. PubMed ID: 26118662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia inducible factor prolyl 4-hydroxylase enzymes: center stage in the battle against hypoxia, metabolic compromise and oxidative stress.
    Siddiq A; Aminova LR; Ratan RR
    Neurochem Res; 2007; 32(4-5):931-46. PubMed ID: 17342411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.