BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 33477941)

  • 1. Heat Stress Responses and Thermotolerance in Maize.
    Li Z; Howell SH
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Transcription Factor bZIP60 Links the Unfolded Protein Response to the Heat Stress Response in Maize.
    Li Z; Tang J; Srivastava R; Bassham DC; Howell SH
    Plant Cell; 2020 Nov; 32(11):3559-3575. PubMed ID: 32843434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ZmHsf05, a new heat shock transcription factor from Zea mays L. improves thermotolerance in Arabidopsis thaliana and rescues thermotolerance defects of the athsfa2 mutant.
    Li GL; Zhang HN; Shao H; Wang GY; Zhang YY; Zhang YJ; Zhao LN; Guo XL; Sheteiwy MS
    Plant Sci; 2019 Jun; 283():375-384. PubMed ID: 31128708
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Gai WX; Ma X; Li Y; Xiao JJ; Khan A; Li QH; Gong ZH
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33171626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arabidopsis immune-associated nucleotide-binding genes repress heat tolerance at the reproductive stage by inhibiting the unfolded protein response and promoting cell death.
    Lu S; Zhu T; Wang Z; Luo L; Wang S; Lu M; Cui Y; Zou B; Hua J
    Mol Plant; 2021 Feb; 14(2):267-284. PubMed ID: 33221412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The calcium-dependent protein kinase ZmCDPK7 functions in heat-stress tolerance in maize.
    Zhao Y; Du H; Wang Y; Wang H; Yang S; Li C; Chen N; Yang H; Zhang Y; Zhu Y; Yang L; Hu X
    J Integr Plant Biol; 2021 Mar; 63(3):510-527. PubMed ID: 33331695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ZmNF-YA1 Contributes to Maize Thermotolerance by Regulating Heat Shock Response.
    Yang Y; Li Z; Zhang J
    Int J Mol Sci; 2024 Jun; 25(11):. PubMed ID: 38892463
    [No Abstract]   [Full Text] [Related]  

  • 8. Transcriptional Profiling Reveals a Time-of-Day-Specific Role of REVEILLE 4/8 in Regulating the First Wave of Heat Shock-Induced Gene Expression in Arabidopsis.
    Li B; Gao Z; Liu X; Sun D; Tang W
    Plant Cell; 2019 Oct; 31(10):2353-2369. PubMed ID: 31358650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Heat Shock Transcription Factor Genes Involved in Thermotolerance of Octoploid Cultivated Strawberry.
    Liao WY; Lin LF; Jheng JL; Wang CC; Yang JH; Chou ML
    Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27999304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HOS1 activates DNA repair systems to enhance plant thermotolerance.
    Han SH; Park YJ; Park CM
    Nat Plants; 2020 Dec; 6(12):1439-1446. PubMed ID: 33199892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Heat Stress Transcription Factor LlHsfA4 Enhanced Basic Thermotolerance through Regulating ROS Metabolism in Lilies (
    Wang C; Zhou Y; Yang X; Zhang B; Xu F; Wang Y; Song C; Yi M; Ma N; Zhou X; He J
    Int J Mol Sci; 2022 Jan; 23(1):. PubMed ID: 35009000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat-response patterns of the heat shock transcription factor family in advanced development stages of wheat (Triticum aestivum L.) and thermotolerance-regulation by TaHsfA2-10.
    Guo XL; Yuan SN; Zhang HN; Zhang YY; Zhang YJ; Wang GY; Li YQ; Li GL
    BMC Plant Biol; 2020 Aug; 20(1):364. PubMed ID: 32746866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and transcriptomic analyses provide insight into thermotolerance in desert plant Zygophyllum xanthoxylum.
    Bai WP; Li HJ; Hepworth SR; Liu HS; Liu LB; Wang GN; Ma Q; Bao AK; Wang SM
    BMC Plant Biol; 2023 Jan; 23(1):7. PubMed ID: 36600201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maize HSFA2 and HSBP2 antagonistically modulate raffinose biosynthesis and heat tolerance in Arabidopsis.
    Gu L; Jiang T; Zhang C; Li X; Wang C; Zhang Y; Li T; Dirk LMA; Downie AB; Zhao T
    Plant J; 2019 Oct; 100(1):128-142. PubMed ID: 31180156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks.
    Fragkostefanakis S; Röth S; Schleiff E; Scharf KD
    Plant Cell Environ; 2015 Sep; 38(9):1881-95. PubMed ID: 24995670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Regulation of heat shock gene expression in response to stress].
    Garbuz DG
    Mol Biol (Mosk); 2017; 51(3):400-417. PubMed ID: 28707656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HsfA7 coordinates the transition from mild to strong heat stress response by controlling the activity of the master regulator HsfA1a in tomato.
    Mesihovic A; Ullrich S; Rosenkranz RRE; Gebhardt P; Bublak D; Eich H; Weber D; Berberich T; Scharf KD; Schleiff E; Fragkostefanakis S
    Cell Rep; 2022 Jan; 38(2):110224. PubMed ID: 35021091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant growth regulators interact with elevated temperature to alter heat stress signaling via the Unfolded Protein Response in maize.
    Neill EM; Byrd MCR; Billman T; Brandizzi F; Stapleton AE
    Sci Rep; 2019 Jul; 9(1):10392. PubMed ID: 31316112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of an optimal promoter involved in the heat-induced transcriptional pathway in Arabidopsis, soybean, rice and maize.
    Maruyama K; Ogata T; Kanamori N; Yoshiwara K; Goto S; Yamamoto YY; Tokoro Y; Noda C; Takaki Y; Urawa H; Iuchi S; Urano K; Yoshida T; Sakurai T; Kojima M; Sakakibara H; Shinozaki K; Yamaguchi-Shinozaki K
    Plant J; 2017 Feb; 89(4):671-680. PubMed ID: 27862521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular insights into sensing, regulation and improving of heat tolerance in plants.
    Saini N; Nikalje GC; Zargar SM; Suprasanna P
    Plant Cell Rep; 2022 Mar; 41(3):799-813. PubMed ID: 34676458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.