BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 33477941)

  • 21. Molecular insights into sensing, regulation and improving of heat tolerance in plants.
    Saini N; Nikalje GC; Zargar SM; Suprasanna P
    Plant Cell Rep; 2022 Mar; 41(3):799-813. PubMed ID: 34676458
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unfolded protein response in pollen development and heat stress tolerance.
    Fragkostefanakis S; Mesihovic A; Hu Y; Schleiff E
    Plant Reprod; 2016 Jun; 29(1-2):81-91. PubMed ID: 27022919
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional diversification of tomato HsfA1 factors is based on DNA binding domain properties.
    El-Shershaby A; Ullrich S; Simm S; Scharf KD; Schleiff E; Fragkostefanakis S
    Gene; 2019 Sep; 714():143985. PubMed ID: 31330236
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insights into heat response mechanisms in Clematis species: physiological analysis, expression profiles and function verification.
    Zhang H; Jiang C; Wang R; Zhang L; Gai R; Peng S; Zhang Y; Mao C; Lou Y; Mo J; Feng S; Ming F
    Plant Mol Biol; 2021 Aug; 106(6):569-587. PubMed ID: 34260001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Heat Stress Factor HSFA6b Connects ABA Signaling and ABA-Mediated Heat Responses.
    Huang YC; Niu CY; Yang CR; Jinn TL
    Plant Physiol; 2016 Oct; 172(2):1182-1199. PubMed ID: 27493213
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative transcriptome analysis reveals the transcriptional alterations in heat-resistant and heat-sensitive sweet maize (Zea mays L.) varieties under heat stress.
    Shi J; Yan B; Lou X; Ma H; Ruan S
    BMC Plant Biol; 2017 Jan; 17(1):26. PubMed ID: 28122503
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overexpression of wheat transcription factor (TaHsfA6b) provides thermotolerance in barley.
    Poonia AK; Mishra SK; Sirohi P; Chaudhary R; Kanwar M; Germain H; Chauhan H
    Planta; 2020 Sep; 252(4):53. PubMed ID: 32945950
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The oxidized cellooligosaccharides confer thermotolerance in Arabidopsis by priming ethylene via heat shock factor A2.
    Zarattini M; Choaibi A; Magri S; Hermans C; Cannella D
    Physiol Plant; 2022 Jul; 174(4):e13737. PubMed ID: 35717612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analyzing the regulatory role of heat shock transcription factors in plant heat stress tolerance: a brief appraisal.
    Haider S; Raza A; Iqbal J; Shaukat M; Mahmood T
    Mol Biol Rep; 2022 Jun; 49(6):5771-5785. PubMed ID: 35182323
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TaHsfA2-1, a new gene for thermotolerance in wheat seedlings: Characterization and functional roles.
    Liu Z; Li G; Zhang H; Zhang Y; Zhang Y; Duan S; Sheteiwy MSA; Zhang H; Shao H; Guo X
    J Plant Physiol; 2020; 246-247():153135. PubMed ID: 32114414
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elucidating the functional role of heat stress transcription factor A6b (TaHsfA6b) in linking heat stress response and the unfolded protein response in wheat.
    Meena S; Samtani H; Khurana P
    Plant Mol Biol; 2022 Apr; 108(6):621-634. PubMed ID: 35305221
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Atypical heat shock response and acquisition of thermotolerance in P388D1 cells.
    Oommen D; Giricz Z; Srinivas UK; Samali A
    Biochem Biophys Res Commun; 2013 Jan; 430(1):236-40. PubMed ID: 23142227
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptomic analysis of short-term heat stress response in Pinellia ternata provided novel insights into the improved thermotolerance by spermidine and melatonin.
    Ma G; Zhang M; Xu J; Zhou W; Cao L
    Ecotoxicol Environ Saf; 2020 Oct; 202():110877. PubMed ID: 32574862
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptional Basis for Differential Thermosensitivity of Seedlings of Various Tomato Genotypes.
    Hu Y; Fragkostefanakis S; Schleiff E; Simm S
    Genes (Basel); 2020 Jun; 11(6):. PubMed ID: 32560080
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular regulation and physiological functions of a novel FaHsfA2c cloned from tall fescue conferring plant tolerance to heat stress.
    Wang X; Huang W; Liu J; Yang Z; Huang B
    Plant Biotechnol J; 2017 Feb; 15(2):237-248. PubMed ID: 27500592
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SMRT and Illumina RNA sequencing reveal novel insights into the heat stress response and crosstalk with leaf senescence in tall fescue.
    Qian Y; Cao L; Zhang Q; Amee M; Chen K; Chen L
    BMC Plant Biol; 2020 Aug; 20(1):366. PubMed ID: 32746857
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alternative Splicing of
    Ma Z; Li M; Zhang H; Zhao B; Liu Z; Duan S; Meng X; Li G; Guo X
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674529
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulative role of calcium signaling on methylglyoxal-improved heat tolerance in maize (
    Li ZG
    Plant Signal Behav; 2020 Sep; 15(9):1788303. PubMed ID: 32603245
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beat the heat: plant- and microbe-mediated strategies for crop thermotolerance.
    Shekhawat K; Almeida-Trapp M; García-Ramírez GX; Hirt H
    Trends Plant Sci; 2022 Aug; 27(8):802-813. PubMed ID: 35331665
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative studies of thermotolerance: different modes of heat acclimation between tolerant and intolerant aquatic plants of the genus Potamogeton.
    Amano M; Iida S; Kosuge K
    Ann Bot; 2012 Feb; 109(2):443-52. PubMed ID: 22147547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.