These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33477962)

  • 1. Improvement of Reliability Determination Performance of Real Time Kinematic Solutions Using Height Trajectory.
    Takanose A; Atsumi Y; Takikawa K; Meguro J
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An SVM Based Weight Scheme for Improving Kinematic GNSS Positioning Accuracy with Low-Cost GNSS Receiver in Urban Environments.
    Lyu Z; Gao Y
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33352876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services.
    Wang L; Li Z; Zhao J; Zhou K; Wang Z; Yuan H
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 28009835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance Evaluation of GNSS Position Augmentation Methods for Autonomous Vehicles in Urban Environments.
    Swaminathan HB; Sommer A; Becker A; Atzmueller M
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise and Robust RTK-GNSS Positioning in Urban Environments with Dual-Antenna Configuration.
    Fan P; Li W; Cui X; Lu M
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Tightly Coupled RTK/INS Algorithm with Ambiguity Resolution in the Position Domain for Ground Vehicles in Harsh Urban Environments.
    Li W; Li W; Cui X; Zhao S; Lu M
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29973573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust Analysis of Network-Based Real-Time Kinematic for GNSS-Derived Heights.
    Bae TS; Grejner-Brzezinska D; Mader G; Dennis M
    Sensors (Basel); 2015 Oct; 15(10):27215-29. PubMed ID: 26516856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multipath/NLOS Detection Based on K-Means Clustering for GNSS/INS Tightly Coupled System in Urban Areas.
    Wang H; Pan S; Gao W; Xia Y; Ma C
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global Navigation Satellite System Real-Time Kinematic Positioning Framework for Precise Operation of a Swarm of Moving Vehicles.
    Kim E; Kim SK
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the Performance of Time-Relative GNSS Precise Positioning in Remote Areas.
    He K; Weng D; Ji S; Wang Z; Chen W; Lu Y; Nie Z
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33406691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GNSS Multipath Detection Using Continuous Time-Series C/N
    Kubo N; Kobayashi K; Furukawa R
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Moving Baseline RTK/Motion Sensor-Integrated Positioning-Based Autonomous Driving Algorithm for a Speed Sprayer.
    Han JH; Park CH; Jang YY
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MIMU/Odometer Fusion with State Constraints for Vehicle Positioning during BeiDou Signal Outage: Testing and Results.
    Zhu K; Guo X; Jiang C; Xue Y; Li Y; Han L; Chen Y
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benefits of Multi-Constellation/Multi-Frequency GNSS in a Tightly Coupled GNSS/IMU/Odometry Integration Algorithm.
    Reuper B; Becker M; Leinen S
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30213078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tightly-Coupled Integration of Multi-GNSS Single-Frequency RTK and MEMS-IMU for Enhanced Positioning Performance.
    Li T; Zhang H; Niu X; Gao Z
    Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29077070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing the Effect of Positioning Errors on Kinematic Raw Doppler (RD) Velocity Estimation Using BDS-2 Precise Point Positioning.
    Duan S; Sun W; Ouyang C; Chen X; Shi J
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31324067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GNSS Precise Relative Positioning Using A Priori Relative Position in a GNSS Harsh Environment.
    Kim E
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implementation and Performance of a Deeply-Coupled GNSS Receiver with Low-Cost MEMS Inertial Sensors for Vehicle Urban Navigation.
    Feng X; Zhang T; Lin T; Tang H; Niu X
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32560192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conditioning and PPP processing of smartphone GNSS measurements in realistic environments.
    Shinghal G; Bisnath S
    Satell Navig; 2021; 2(1):10. PubMed ID: 34790903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Improved Relative GNSS Tracking Method Utilizing Single Frequency Receivers.
    Yang W; Liu Y; Liu F
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32707822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.