These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 33477969)

  • 1. The Positive Allosteric Modulation of alpha7-Nicotinic Cholinergic Receptors by GAT107 Increases Bacterial Lung Clearance in Hyperoxic Mice by Decreasing Oxidative Stress in Macrophages.
    Gauthier AG; Wu J; Lin M; Sitapara R; Kulkarni A; Thakur GA; Schmidt EE; Perron JC; Ashby CR; Mantell LL
    Antioxidants (Basel); 2021 Jan; 10(1):. PubMed ID: 33477969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GAT107-mediated α7 nicotinic acetylcholine receptor signaling attenuates inflammatory lung injury and mortality in a mouse model of ventilator-associated pneumonia by alleviating macrophage mitochondrial oxidative stress via reducing MnSOD-S-glutathionylation.
    Gauthier AG; Lin M; Zefi S; Kulkarni A; Thakur GA; Ashby CR; Mantell LL
    Redox Biol; 2023 Apr; 60():102614. PubMed ID: 36717349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The α7 nicotinic acetylcholine receptor agonist GTS-21 improves bacterial clearance in mice by restoring hyperoxia-compromised macrophage function.
    Sitapara RA; Gauthier AG; Patel VS; Lin M; Zur M; Ashby CR; Mantell LL
    Mol Med; 2020 Oct; 26(1):98. PubMed ID: 33126860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The α7 nicotinic acetylcholine receptor agonist GTS-21 improves bacterial clearance in mice by restoring hyperoxia-compromised macrophage function.
    Sitapara RA; Antoine DJ; Sharma L; Patel VS; Ashby CR; Gorasiya S; Yang H; Zur M; Mantell LL
    Mol Med; 2014 Jun; 20(1):238-47. PubMed ID: 24664237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of neuroinflammation by an allosteric agonist and positive allosteric modulator of the α7 nicotinic acetylcholine receptor GAT107.
    Mizrachi T; Marsha O; Brusin K; Ben-David Y; Thakur GA; Vaknin-Dembinsky A; Treinin M; Brenner T
    J Neuroinflammation; 2021 Apr; 18(1):99. PubMed ID: 33902624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual effects of supplemental oxygen on pulmonary infection, inflammatory lung injury, and neuromodulation in aging and COVID-19.
    Lin M; Stewart MT; Zefi S; Mateti KV; Gauthier A; Sharma B; Martinez LR; Ashby CR; Mantell LL
    Free Radic Biol Med; 2022 Sep; 190():247-263. PubMed ID: 35964839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nitric oxide donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NONOate/D-NO), increases survival by attenuating hyperoxia-compromised innate immunity in bacterial clearance in a mouse model of ventilator-associated pneumonia.
    Gore A; Gauthier AG; Lin M; Patel V; Thomas DD; Ashby CR; Mantell LL
    Biochem Pharmacol; 2020 Jun; 176():113817. PubMed ID: 31972169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The α7 nicotinic receptor dual allosteric agonist and positive allosteric modulator GAT107 reverses nociception in mouse models of inflammatory and neuropathic pain.
    Bagdas D; Wilkerson JL; Kulkarni A; Toma W; AlSharari S; Gul Z; Lichtman AH; Papke RL; Thakur GA; Damaj MI
    Br J Pharmacol; 2016 Aug; 173(16):2506-20. PubMed ID: 27243753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dose-dependent effects of GAT107, a novel allosteric agonist-positive allosteric modulator (ago-PAM) for the α7 nicotinic cholinergic receptor: a BOLD phMRI and connectivity study on awake rats.
    Brems BM; Sullivan EE; Connolly JG; Zhang J; Chang A; Ortiz R; Cantwell L; Kulkarni P; Thakur GA; Ferris CF
    Front Neurosci; 2023; 17():1196786. PubMed ID: 37424993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The activity of GAT107, an allosteric activator and positive modulator of α7 nicotinic acetylcholine receptors (nAChR), is regulated by aromatic amino acids that span the subunit interface.
    Papke RL; Horenstein NA; Kulkarni AR; Stokes C; Corrie LW; Maeng CY; Thakur GA
    J Biol Chem; 2014 Feb; 289(7):4515-31. PubMed ID: 24362025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antioxidants preserve macrophage phagocytosis of Pseudomonas aeruginosa during hyperoxia.
    Morrow DM; Entezari-Zaher T; Romashko J; Azghani AO; Javdan M; Ulloa L; Miller EJ; Mantell LL
    Free Radic Biol Med; 2007 May; 42(9):1338-49. PubMed ID: 17395007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The α7 nicotinic acetylcholine receptor agonist, GTS-21, attenuates hyperoxia-induced acute inflammatory lung injury by alleviating the accumulation of HMGB1 in the airways and the circulation.
    Sitapara RA; Gauthier AG; Valdés-Ferrer SI; Lin M; Patel V; Wang M; Martino AT; Perron JC; Ashby CR; Tracey KJ; Pavlov VA; Mantell LL
    Mol Med; 2020 Jun; 26(1):63. PubMed ID: 32600307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ascorbic Acid Attenuates Hyperoxia-Compromised Host Defense against Pulmonary Bacterial Infection.
    Patel VS; Sampat V; Espey MG; Sitapara R; Wang H; Yang X; Ashby CR; Thomas DD; Mantell LL
    Am J Respir Cell Mol Biol; 2016 Oct; 55(4):511-520. PubMed ID: 27120084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary Antioxidants Significantly Attenuate Hyperoxia-Induced Acute Inflammatory Lung Injury by Enhancing Macrophage Function via Reducing the Accumulation of Airway HMGB1.
    Patel V; Dial K; Wu J; Gauthier AG; Wu W; Lin M; Espey MG; Thomas DD; Ashby CR; Mantell LL
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32024151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macroscopic and Microscopic Activation of
    Quadri M; Garai S; Thakur GA; Stokes C; Gulsevin A; Horenstein NA; Papke RL
    Mol Pharmacol; 2019 Jan; 95(1):43-61. PubMed ID: 30348894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The compromise of macrophage functions by hyperoxia is attenuated by ethacrynic acid via inhibition of NF-κB-mediated release of high-mobility group box-1.
    Wang M; Gorasiya S; Antoine DJ; Sitapara RA; Wu W; Sharma L; Yang H; Ashby CR; Vasudevan D; Zur M; Thomas DD; Mantell LL
    Am J Respir Cell Mol Biol; 2015 Feb; 52(2):171-82. PubMed ID: 24992505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen peroxide enhances phagocytosis of Pseudomonas aeruginosa in hyperoxia.
    Phan BD; Entezari M; Lockshin RA; Bartelt DC; Mantell LL
    J Immunotoxicol; 2011; 8(1):3-9. PubMed ID: 21261440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression level and subcellular localization of heme oxygenase-1 modulates its cytoprotective properties in response to lung injury: a mouse model.
    Namba F; Go H; Murphy JA; La P; Yang G; Sengupta S; Fernando AP; Yohannes M; Biswas C; Wehrli SL; Dennery PA
    PLoS One; 2014; 9(3):e90936. PubMed ID: 24599172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neonatal exposure to mild hyperoxia causes persistent increases in oxidative stress and immune cells in the lungs of mice without altering lung structure.
    Bouch S; O'Reilly M; Harding R; Sozo F
    Am J Physiol Lung Cell Mol Physiol; 2015 Sep; 309(5):L488-96. PubMed ID: 26138645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Mobility Group Box-1 mediates hyperoxia-induced impairment of Pseudomonas aeruginosa clearance and inflammatory lung injury in mice.
    Patel VS; Sitapara RA; Gore A; Phan B; Sharma L; Sampat V; Li JH; Yang H; Chavan SS; Wang H; Tracey KJ; Mantell LL
    Am J Respir Cell Mol Biol; 2013 Mar; 48(3):280-7. PubMed ID: 23087050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.