These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

588 related articles for article (PubMed ID: 33478081)

  • 41. Potential Therapeutic Features of Human Amniotic Mesenchymal Stem Cells in Multiple Sclerosis: Immunomodulation, Inflammation Suppression, Angiogenesis Promotion, Oxidative Stress Inhibition, Neurogenesis Induction, MMPs Regulation, and Remyelination Stimulation.
    Abbasi-Kangevari M; Ghamari SH; Safaeinejad F; Bahrami S; Niknejad H
    Front Immunol; 2019; 10():238. PubMed ID: 30842772
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hematogenous Donor Cell Routing Pathway After Transamniotic Stem Cell Therapy.
    Tracy SA; Chalphin AV; Kycia I; Chan C; Finkelstein A; Zurakowski D; Fauza DO
    Stem Cells Dev; 2020 Jun; 29(12):755-760. PubMed ID: 32228172
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Therapeutic potential of placenta-derived stem cells for liver diseases: current status and perspectives.
    Miki T; Grubbs B
    J Obstet Gynaecol Res; 2014 Feb; 40(2):360-8. PubMed ID: 24245961
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Strategies for immortalisation of amnion-derived mesenchymal and epithelial cells.
    Ansari A; Denton KM; Lim R
    Cell Biol Int; 2022 Dec; 46(12):1999-2008. PubMed ID: 35998259
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Human embryonic stem cell-derived mesenchymal stromal cells.
    Hematti P
    Transfusion; 2011 Nov; 51 Suppl 4(Suppl 4):138S-144S. PubMed ID: 22074624
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Human placental stem cells: biomedical potential and clinical relevance.
    Malek A; Bersinger NA
    J Stem Cells; 2011; 6(2):75-92. PubMed ID: 22997848
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes.
    Tsuji H; Miyoshi S; Ikegami Y; Hida N; Asada H; Togashi I; Suzuki J; Satake M; Nakamizo H; Tanaka M; Mori T; Segawa K; Nishiyama N; Inoue J; Makino H; Miyado K; Ogawa S; Yoshimura Y; Umezawa A
    Circ Res; 2010 May; 106(10):1613-23. PubMed ID: 20508201
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mesenchymal stem cells for tissue engineering and regenerative medicine.
    Tae SK; Lee SH; Park JS; Im GI
    Biomed Mater; 2006 Jun; 1(2):63-71. PubMed ID: 18460758
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Application of adult mesenchymal stem cells in bone and vascular tissue engineering.
    Trávníčková M; Bačáková L
    Physiol Res; 2018 Dec; 67(6):831-850. PubMed ID: 30204468
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Amnion-derived stem cells: in quest of clinical applications.
    Miki T
    Stem Cell Res Ther; 2011 May; 2(3):25. PubMed ID: 21596003
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Survey and Critical Evaluation of Isolation, Culture, and Cryopreservation Methods of Human Amniotic Epithelial Cells.
    Naeem A; Gupta N; Arzoo N; Naeem U; Khan MJ; Choudhry MU; Cui W; Albanese C
    Cell Cycle; 2022 Apr; 21(7):655-673. PubMed ID: 35289707
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Non-Ionizing Radiation for Cardiac Human Amniotic Mesenchymal Stromal Cell Commitment: A Physical Strategy in Regenerative Medicine.
    Ledda M; D'Emilia E; Lolli MG; Marchese R; De Lazzari C; Lisi A
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30096780
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Human amniotic mesenchymal stromal cells promote bone regeneration via activating endogenous regeneration.
    Jiang F; Zhang W; Zhou M; Zhou Z; Shen M; Chen N; Jiang X
    Theranostics; 2020; 10(14):6216-6230. PubMed ID: 32483449
    [No Abstract]   [Full Text] [Related]  

  • 54. Dental Tissue-Derived Mesenchymal Stem Cells: Applications in Tissue Engineering.
    Dave JR; Tomar GB
    Crit Rev Biomed Eng; 2018; 46(5):429-468. PubMed ID: 30806262
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Amniotic membrane and amniotic cells: potential therapeutic tools to combat tissue inflammation and fibrosis?
    Manuelpillai U; Moodley Y; Borlongan CV; Parolini O
    Placenta; 2011 Oct; 32 Suppl 4():S320-5. PubMed ID: 21570115
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mesenchymal Stem Cells Current Clinical Applications: A Systematic Review.
    Rodríguez-Fuentes DE; Fernández-Garza LE; Samia-Meza JA; Barrera-Barrera SA; Caplan AI; Barrera-Saldaña HA
    Arch Med Res; 2021 Jan; 52(1):93-101. PubMed ID: 32977984
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Amniotic mesenchymal stem cells have robust angiogenic properties and are effective in treating hindlimb ischaemia.
    Kim SW; Zhang HZ; Kim CE; An HS; Kim JM; Kim MH
    Cardiovasc Res; 2012 Mar; 93(3):525-34. PubMed ID: 22155484
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Human amniotic membrane as a delivery vehicle for stem cell-based therapies.
    Chen P; Lu M; Wang T; Dian D; Zhong Y; Aleahmad M
    Life Sci; 2021 May; 272():119157. PubMed ID: 33524418
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Human amnion epithelial cells expressing HLA-G as novel cell-based treatment for liver disease.
    Strom SC; Gramignoli R
    Hum Immunol; 2016 Sep; 77(9):734-9. PubMed ID: 27476049
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cellular and Site-Specific Mitochondrial Characterization of Vital Human Amniotic Membrane.
    Banerjee A; Lindenmair A; Hennerbichler S; Steindorf P; Steinborn R; Kozlov AV; Redl H; Wolbank S; Weidinger A
    Cell Transplant; 2018 Jan; 27(1):3-11. PubMed ID: 29562784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.