These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 33478087)
1. Cellular Redox State Acts as Switch to Determine the Direction of NNT-Catalyzed Reaction in Cystic Fibrosis Cells. Favia M; Atlante A Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33478087 [TBL] [Abstract][Full Text] [Related]
2. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities. Ronchi JA; Figueira TR; Ravagnani FG; Oliveira HC; Vercesi AE; Castilho RF Free Radic Biol Med; 2013 Oct; 63():446-56. PubMed ID: 23747984 [TBL] [Abstract][Full Text] [Related]
3. Nicotinamide nucleotide transhydrogenase is required for brain mitochondrial redox balance under hampered energy substrate metabolism and high-fat diet. Francisco A; Ronchi JA; Navarro CDC; Figueira TR; Castilho RF J Neurochem; 2018 Dec; 147(5):663-677. PubMed ID: 30281804 [TBL] [Abstract][Full Text] [Related]
4. Selective NADH communication from α-ketoglutarate dehydrogenase to mitochondrial transhydrogenase prevents reactive oxygen species formation under reducing conditions in the heart. Wagner M; Bertero E; Nickel A; Kohlhaas M; Gibson GE; Heggermont W; Heymans S; Maack C Basic Res Cardiol; 2020 Aug; 115(5):53. PubMed ID: 32748289 [TBL] [Abstract][Full Text] [Related]
5. The Contribution of Nicotinamide Nucleotide Transhydrogenase to Peroxide Detoxification Is Dependent on the Respiratory State and Counterbalanced by Other Sources of NADPH in Liver Mitochondria. Ronchi JA; Francisco A; Passos LA; Figueira TR; Castilho RF J Biol Chem; 2016 Sep; 291(38):20173-87. PubMed ID: 27474736 [TBL] [Abstract][Full Text] [Related]
6. NNT reverse mode of operation mediates glucose control of mitochondrial NADPH and glutathione redox state in mouse pancreatic β-cells. Santos LRB; Muller C; de Souza AH; Takahashi HK; Spégel P; Sweet IR; Chae H; Mulder H; Jonas JC Mol Metab; 2017 Jun; 6(6):535-547. PubMed ID: 28580284 [TBL] [Abstract][Full Text] [Related]
7. Silencing of nicotinamide nucleotide transhydrogenase impairs cellular redox homeostasis and energy metabolism in PC12 cells. Yin F; Sancheti H; Cadenas E Biochim Biophys Acta; 2012 Mar; 1817(3):401-9. PubMed ID: 22198343 [TBL] [Abstract][Full Text] [Related]
8. Nicotinamide nucleotide transhydrogenase (NNT) regulates mitochondrial ROS and endothelial dysfunction in response to angiotensin II. Rao KNS; Shen X; Pardue S; Krzywanski DM Redox Biol; 2020 Sep; 36():101650. PubMed ID: 32763515 [TBL] [Abstract][Full Text] [Related]
9. Diminished NADPH transhydrogenase activity and mitochondrial redox regulation in human failing myocardium. Sheeran FL; Rydström J; Shakhparonov MI; Pestov NB; Pepe S Biochim Biophys Acta; 2010; 1797(6-7):1138-48. PubMed ID: 20388492 [TBL] [Abstract][Full Text] [Related]
10. Reversal of Mitochondrial Transhydrogenase Causes Oxidative Stress in Heart Failure. Nickel AG; von Hardenberg A; Hohl M; Löffler JR; Kohlhaas M; Becker J; Reil JC; Kazakov A; Bonnekoh J; Stadelmaier M; Puhl SL; Wagner M; Bogeski I; Cortassa S; Kappl R; Pasieka B; Lafontaine M; Lancaster CR; Blacker TS; Hall AR; Duchen MR; Kästner L; Lipp P; Zeller T; Müller C; Knopp A; Laufs U; Böhm M; Hoth M; Maack C Cell Metab; 2015 Sep; 22(3):472-84. PubMed ID: 26256392 [TBL] [Abstract][Full Text] [Related]
12. Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy-consuming redox circuit. Fisher-Wellman KH; Lin CT; Ryan TE; Reese LR; Gilliam LA; Cathey BL; Lark DS; Smith CD; Muoio DM; Neufer PD Biochem J; 2015 Apr; 467(2):271-80. PubMed ID: 25643703 [TBL] [Abstract][Full Text] [Related]
13. The lack of functional nicotinamide nucleotide transhydrogenase only moderately contributes to the impairment of glucose tolerance and glucose-stimulated insulin secretion in C57BL/6J vs C57BL/6N mice. Close AF; Chae H; Jonas JC Diabetologia; 2021 Nov; 64(11):2550-2561. PubMed ID: 34448880 [TBL] [Abstract][Full Text] [Related]
14. NADPH-to-NADH conversion by mitochondrial transhydrogenase is indispensable for sustaining anaerobic metabolism in Euglena gracilis. Nakazawa M; Takahashi M; Hayashi R; Matsubara Y; Kashiyama Y; Ueda M; Inui H; Sakamoto T FEBS Lett; 2021 Dec; 595(23):2922-2930. PubMed ID: 34738635 [TBL] [Abstract][Full Text] [Related]
15. The energetic cost of NNT-dependent ROS removal. Kaludercic N; Di Lisa F J Biol Chem; 2020 Nov; 295(48):16217-16218. PubMed ID: 33246940 [TBL] [Abstract][Full Text] [Related]
16. Redox Modulation by Reversal of the Mitochondrial Nicotinamide Nucleotide Transhydrogenase. Murphy MP Cell Metab; 2015 Sep; 22(3):363-5. PubMed ID: 26331603 [TBL] [Abstract][Full Text] [Related]
17. Nicotinamide Nucleotide Transhydrogenase as a Sensor of Mitochondrial Biology. Nesci S; Trombetti F; Pagliarani A Trends Cell Biol; 2020 Jan; 30(1):1-3. PubMed ID: 31753532 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial transition ROS spike (mTRS) results from coordinated activities of complex I and nicotinamide nucleotide transhydrogenase. Sharaf MS; Stevens D; Kamunde C Biochim Biophys Acta Bioenerg; 2017 Dec; 1858(12):955-965. PubMed ID: 28866380 [TBL] [Abstract][Full Text] [Related]
19. Disruption of pyridine nucleotide redox status during oxidative challenge at normal and low-glucose states: implications for cellular adenosine triphosphate, mitochondrial respiratory activity, and reducing capacity in colon epithelial cells. Circu ML; Maloney RE; Aw TY Antioxid Redox Signal; 2011 Jun; 14(11):2151-62. PubMed ID: 21083422 [TBL] [Abstract][Full Text] [Related]
20. Regulation of immune cell function by nicotinamide nucleotide transhydrogenase. Regan T; Conway R; Bharath LP Am J Physiol Cell Physiol; 2022 Apr; 322(4):C666-C673. PubMed ID: 35138175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]