BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33478505)

  • 1. 3D printed Ti6Al4V bone scaffolds with different pore structure effects on bone ingrowth.
    Deng F; Liu L; Li Z; Liu J
    J Biol Eng; 2021 Jan; 15(1):4. PubMed ID: 33478505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes.
    Ran Q; Yang W; Hu Y; Shen X; Yu Y; Xiang Y; Cai K
    J Mech Behav Biomed Mater; 2018 Aug; 84():1-11. PubMed ID: 29709846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth.
    Chen Z; Yan X; Yin S; Liu L; Liu X; Zhao G; Ma W; Qi W; Ren Z; Liao H; Liu M; Cai D; Fang H
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110289. PubMed ID: 31753386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-pore-size Ti6Al4V scaffolds with different pore structures for vascularized bone regeneration.
    Wang C; Xu D; Lin L; Li S; Hou W; He Y; Sheng L; Yi C; Zhang X; Li H; Li Y; Zhao W; Yu D
    Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112499. PubMed ID: 34857285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of 3D-printed Ti
    Wang H; Su K; Su L; Liang P; Ji P; Wang C
    J Mech Behav Biomed Mater; 2018 Dec; 88():488-496. PubMed ID: 30223212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving osteoinduction and osteogenesis of Ti6Al4V alloy porous scaffold by regulating the pore structure.
    Wang C; Wu J; Liu L; Xu D; Liu Y; Li S; Hou W; Wang J; Chen X; Sheng L; Lin H; Yu D
    Front Chem; 2023; 11():1190630. PubMed ID: 37265590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of different structures fabricated by additive manufacturing on bone ingrowth.
    Lu S; Jiang D; Liu S; Liang H; Lu J; Xu H; Li J; Xiao J; Zhang J; Fei Q
    J Biomater Appl; 2022 May; 36(10):1863-1872. PubMed ID: 35227103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vitro and in Vivo Study of 3D-Printed Porous Tantalum Scaffolds for Repairing Bone Defects.
    Guo Y; Xie K; Jiang W; Wang L; Li G; Zhao S; Wu W; Hao Y
    ACS Biomater Sci Eng; 2019 Feb; 5(2):1123-1133. PubMed ID: 33405802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds.
    Van Bael S; Chai YC; Truscello S; Moesen M; Kerckhofs G; Van Oosterwyck H; Kruth JP; Schrooten J
    Acta Biomater; 2012 Jul; 8(7):2824-34. PubMed ID: 22487930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone bonding strength of diamond-structured porous titanium-alloy implants manufactured using the electron beam-melting technique.
    Hara D; Nakashima Y; Sato T; Hirata M; Kanazawa M; Kohno Y; Yoshimoto K; Yoshihara Y; Nakamura A; Nakao Y; Iwamoto Y
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():1047-1052. PubMed ID: 26652463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment.
    Taniguchi N; Fujibayashi S; Takemoto M; Sasaki K; Otsuki B; Nakamura T; Matsushita T; Kokubo T; Matsuda S
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():690-701. PubMed ID: 26652423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of bone ingrowth into porous biomaterials using MICRO-CT.
    Jones AC; Arns CH; Sheppard AP; Hutmacher DW; Milthorpe BK; Knackstedt MA
    Biomaterials; 2007 May; 28(15):2491-504. PubMed ID: 17335896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Internal flow field analysis of heterogeneous porous scaffold for bone tissue engineering.
    Wang X; Chen J; Guan Y; Sun L; Kang Y
    Comput Methods Biomech Biomed Engin; 2023 May; 26(7):807-819. PubMed ID: 35723938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone Conduction Capacity of Highly Porous 3D-Printed Titanium Scaffolds Based on Different Pore Designs.
    Lim HK; Ryu M; Woo SH; Song IS; Choi YJ; Lee UL
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of permeability and effective diffusivity of porous scaffolds on bone ingrowth: In silico and in vivo analyses.
    Zhang Y; He SY; Wang P; Gu J; Jiang Q; Liu M; Wen C
    Biomater Adv; 2024 Jul; 161():213901. PubMed ID: 38776602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical behaviours and mass transport properties of bone-mimicking scaffolds consisted of gyroid structures manufactured using selective laser melting.
    Ma S; Tang Q; Feng Q; Song J; Han X; Guo F
    J Mech Behav Biomed Mater; 2019 May; 93():158-169. PubMed ID: 30798182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical Effects of 3D-Printed Bioceramic Scaffolds With Porous Gradient Structures on the Regeneration of Alveolar Bone Defect: A Comprehensive Study.
    Yang Z; Wang C; Gao H; Jia L; Zeng H; Zheng L; Wang C; Zhang H; Wang L; Song J; Fan Y
    Front Bioeng Biotechnol; 2022; 10():882631. PubMed ID: 35694236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Fluid Dynamic Analysis of customised 3D-printed bone scaffolds with different architectures.
    Ntousi O; Roumpi M; Siogkas P; Deligianni D; Fotiadis DI
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.