These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33478505)

  • 21. Study of Bone Regeneration and Osteointegration Effect of a Novel Selective Laser-Melted Titanium-Tantalum-Niobium-Zirconium Alloy Scaffold.
    Guo Y; Wu J; Xie K; Tan J; Yang Y; Zhao S; Wang L; Jiang W; Hao Y
    ACS Biomater Sci Eng; 2019 Dec; 5(12):6463-6473. PubMed ID: 33417799
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D printed titanium scaffolds with homogeneous diamond-like structures mimicking that of the osteocyte microenvironment and its bone regeneration study.
    Pei X; Wu L; Zhou C; Fan H; Gou M; Li Z; Zhang B; Lei H; Sun H; Liang J; Jiang Q; Fan Y; Zhang X
    Biofabrication; 2020 Oct; 13(1):. PubMed ID: 33045688
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis.
    Wang H; Su K; Su L; Liang P; Ji P; Wang C
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109908. PubMed ID: 31499974
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of osteogenic capability of 3D-printed bioceramic scaffolds and granules with different porosities for clinical translation.
    Yue X; Zhao L; Yang J; Jiao X; Wu F; Zhang Y; Li Y; Qiu J; Ke X; Sun X; Yang X; Gou Z; Zhang L; Yang G
    Front Bioeng Biotechnol; 2023; 11():1260639. PubMed ID: 37840661
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure.
    Zhang C; Zhang L; Liu L; Lv L; Gao L; Liu N; Wang X; Ye J
    J Orthop Surg Res; 2020 Feb; 15(1):40. PubMed ID: 32028970
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A 3D Printed Porous Titanium Alloy Rod with Diamond Crystal Lattice for Treatment of the Early-Stage Femoral Head Osteonecrosis in Sheep.
    Wang C; Liu D; Xie Q; Liu J; Deng S; Gong K; Huang C; Yin L; Xie M; Guo Z; Zheng W
    Int J Med Sci; 2019; 16(3):486-493. PubMed ID: 30911283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of low-intensity pulsed ultrasound on the biological behavior of osteoblasts on porous titanium alloy scaffolds: An in vitro and in vivo study.
    Cao H; Feng L; Wu Z; Hou W; Li S; Hao Y; Wu L
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():7-17. PubMed ID: 28866219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications.
    Peng WM; Liu YF; Jiang XF; Dong XT; Jun J; Baur DA; Xu JJ; Pan H; Xu X
    J Zhejiang Univ Sci B; 2019 Aug.; 20(8):647-659. PubMed ID: 31273962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Incorporating simvastatin/poloxamer 407 hydrogel into 3D-printed porous Ti
    Liu H; Li W; Liu C; Tan J; Wang H; Hai B; Cai H; Leng HJ; Liu ZJ; Song CL
    Biofabrication; 2016 Oct; 8(4):045012. PubMed ID: 27788122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting.
    Shah FA; Omar O; Suska F; Snis A; Matic A; Emanuelsson L; Norlindh B; Lausmaa J; Thomsen P; Palmquist A
    Acta Biomater; 2016 May; 36():296-309. PubMed ID: 27000553
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study.
    Truscello S; Kerckhofs G; Van Bael S; Pyka G; Schrooten J; Van Oosterwyck H
    Acta Biomater; 2012 Apr; 8(4):1648-58. PubMed ID: 22210520
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrated evaluation of biomechanical and biological properties of the biomimetic structural bone scaffold: Biomechanics, simulation analysis, and osteogenesis.
    Li J; Yang Y; Sun Z; Peng K; Liu K; Xu P; Li J; Wei X; He X
    Mater Today Bio; 2024 Feb; 24():100934. PubMed ID: 38234458
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extra low interstitial titanium based fully porous morphological bone scaffolds manufactured using selective laser melting.
    Bari K; Arjunan A
    J Mech Behav Biomed Mater; 2019 Jul; 95():1-12. PubMed ID: 30947119
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects.
    Li G; Wang L; Pan W; Yang F; Jiang W; Wu X; Kong X; Dai K; Hao Y
    Sci Rep; 2016 Sep; 6():34072. PubMed ID: 27667204
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bone ingrowth of various porous titanium scaffolds produced by a moldless and space holder technique: an in vivo study in rabbits.
    Prananingrum W; Naito Y; Galli S; Bae J; Sekine K; Hamada K; Tomotake Y; Wennerberg A; Jimbo R; Ichikawa T
    Biomed Mater; 2016 Feb; 11(1):015012. PubMed ID: 26836201
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Porous tantalum structure integrated on Ti6Al4V base by Laser Powder Bed Fusion for enhanced bony-ingrowth implants: In vitro and in vivo validation.
    Lei P; Qian H; Zhang T; Lei T; Hu Y; Chen C; Zhou K
    Bioact Mater; 2022 Jan; 7():3-13. PubMed ID: 34430760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants.
    Cheong VS; Fromme P; Mumith A; Coathup MJ; Blunn GW
    J Mech Behav Biomed Mater; 2018 Nov; 87():230-239. PubMed ID: 30086415
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants.
    Otsuki B; Takemoto M; Fujibayashi S; Neo M; Kokubo T; Nakamura T
    Biomaterials; 2006 Dec; 27(35):5892-900. PubMed ID: 16945409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone.
    Wieding J; Wolf A; Bader R
    J Mech Behav Biomed Mater; 2014 Sep; 37():56-68. PubMed ID: 24942627
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing.
    Ruiz-Cantu L; Gleadall A; Faris C; Segal J; Shakesheff K; Yang J
    Biofabrication; 2016 Mar; 8(1):015016. PubMed ID: 26930179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.