These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33478505)

  • 41. Geometry-Based Computational Fluid Dynamic Model for Predicting the Biological Behavior of Bone Tissue Engineering Scaffolds.
    Omar AM; Hassan MH; Daskalakis E; Ates G; Bright CJ; Xu Z; Powell EJ; Mirihanage W; Bartolo PJDS
    J Funct Biomater; 2022 Jul; 13(3):. PubMed ID: 35997442
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bone tissue regeneration: The role of finely tuned pore architecture of bioactive scaffolds before clinical translation.
    Wu R; Li Y; Shen M; Yang X; Zhang L; Ke X; Yang G; Gao C; Gou Z; Xu S
    Bioact Mater; 2021 May; 6(5):1242-1254. PubMed ID: 33210022
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design of a Haversian system-like gradient porous scaffold based on triply periodic minimal surfaces for promoting bone regeneration.
    Li L; Wang P; Liang H; Jin J; Zhang Y; Shi J; Zhang Y; He S; Mao H; Xue B; Lai J; Zhu L; Jiang Q
    J Adv Res; 2023 Dec; 54():89-104. PubMed ID: 36632888
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 2D µ-Particle Image Velocimetry and Computational Fluid Dynamics Study Within a 3D Porous Scaffold.
    Campos Marin A; Grossi T; Bianchi E; Dubini G; Lacroix D
    Ann Biomed Eng; 2017 May; 45(5):1341-1351. PubMed ID: 27957607
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Femtosecond laser treatment promotes the surface bioactivity and bone ingrowth of Ti
    Wang S; Zhang M; Liu L; Xu R; Huang Z; Shi Z; Liu J; Li Z; Li X; Hao P; Hao Y
    Front Bioeng Biotechnol; 2022; 10():962483. PubMed ID: 36213066
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Selective Laser Sintering-produced porous titanium alloy scaffold for bone tissue engineering].
    Ding R; Wu Z; Qiu G; Wu G; Wang H; Su X; Yin B; Ma S; Qi B
    Zhonghua Yi Xue Za Zhi; 2014 May; 94(19):1499-502. PubMed ID: 25143173
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of a Bone-Mimetic 3D Printed Ti6Al4V Scaffold to Enhance Osteoblast-Derived Extracellular Vesicles' Therapeutic Efficacy for Bone Regeneration.
    Man K; Brunet MY; Louth S; Robinson TE; Fernandez-Rhodes M; Williams S; Federici AS; Davies OG; Hoey DA; Cox SC
    Front Bioeng Biotechnol; 2021; 9():757220. PubMed ID: 34765595
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect.
    Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC
    J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of Pore Size on the Osteoconductivity and Mechanical Properties of Calcium Phosphate Cement in a Rabbit Model.
    Zhao YN; Fan JJ; Li ZQ; Liu YW; Wu YP; Liu J
    Artif Organs; 2017 Feb; 41(2):199-204. PubMed ID: 27401022
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Biological evaluation of three-dimensional printed co-poly lactic acid/glycolic acid/tri-calcium phosphate scaffold for bone reconstruction].
    Li SY; Zhou M; Lai YX; Geng YM; Cao SS; Chen XM
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2016 Nov; 51(11):661-666. PubMed ID: 27806758
    [No Abstract]   [Full Text] [Related]  

  • 51. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants.
    Han C; Li Y; Wang Q; Wen S; Wei Q; Yan C; Hao L; Liu J; Shi Y
    J Mech Behav Biomed Mater; 2018 Apr; 80():119-127. PubMed ID: 29414467
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design, construction and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold.
    Yao Q; Wei B; Guo Y; Jin C; Du X; Yan C; Yan J; Hu W; Xu Y; Zhou Z; Wang Y; Wang L
    J Mater Sci Mater Med; 2015 Jan; 26(1):5360. PubMed ID: 25596860
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A technique for evaluating bone ingrowth into 3D printed, porous Ti6Al4V implants accurately using X-ray micro-computed tomography and histomorphometry.
    Palmquist A; Shah FA; Emanuelsson L; Omar O; Suska F
    Micron; 2017 Mar; 94():1-8. PubMed ID: 27960108
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineering craniofacial scaffolds.
    Hollister SJ; Lin CY; Saito E; Lin CY; Schek RD; Taboas JM; Williams JM; Partee B; Flanagan CL; Diggs A; Wilke EN; Van Lenthe GH; Müller R; Wirtz T; Das S; Feinberg SE; Krebsbach PH
    Orthod Craniofac Res; 2005 Aug; 8(3):162-73. PubMed ID: 16022718
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of bone ingrowth between two porous titanium alloy rods with biogenic lamellar structures and diamond crystal lattice on femoral condyles in rabbits.
    Li W; Wang Y; Yang X; Xie Q; Wang C
    Biochem Biophys Res Commun; 2023 Jan; 641():155-161. PubMed ID: 36527750
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Highly porous titanium scaffolds for orthopaedic applications.
    Dabrowski B; Swieszkowski W; Godlinski D; Kurzydlowski KJ
    J Biomed Mater Res B Appl Biomater; 2010 Oct; 95(1):53-61. PubMed ID: 20690174
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of Unit Cell Type and Pore Size on Porosity and Mechanical Behavior of Additively Manufactured Ti6Al4V Scaffolds.
    Zaharin HA; Abdul Rani AM; Azam FI; Ginta TL; Sallih N; Ahmad A; Yunus NA; Zulkifli TZA
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30487419
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation and Prediction of Mass Transport Properties for Porous Implant with Different Unit Cells: A Numerical Study.
    Li J; Chen D; Fan Y
    Biomed Res Int; 2019; 2019():3610785. PubMed ID: 31179318
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Facilitated vascularization and enhanced bone regeneration by manipulation hierarchical pore structure of scaffolds.
    Liu Y; Yang S; Cao L; Zhang X; Wang J; Liu C
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110622. PubMed ID: 32204064
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biomechanical behavior of bone scaffolds made of additive manufactured tricalciumphosphate and titanium alloy under different loading conditions.
    Wieding J; Fritsche A; Heinl P; Körner C; Cornelsen M; Seitz H; Mittelmeier W; Bader R
    J Appl Biomater Funct Mater; 2013 Dec; 11(3):e159-66. PubMed ID: 23599179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.