These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33479227)

  • 1. The rise of angiosperms strengthened fire feedbacks and improved the regulation of atmospheric oxygen.
    Belcher CM; Mills BJW; Vitali R; Baker SJ; Lenton TM; Watson AJ
    Nat Commun; 2021 Jan; 12(1):503. PubMed ID: 33479227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charcoal evidence that rising atmospheric oxygen terminated Early Jurassic ocean anoxia.
    Baker SJ; Hesselbo SP; Lenton TM; Duarte LV; Belcher CM
    Nat Commun; 2017 May; 8():15018. PubMed ID: 28497785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes to Cretaceous surface fire behaviour influenced the spread of the early angiosperms.
    Belcher CM; Hudspith VA
    New Phytol; 2017 Feb; 213(3):1521-1532. PubMed ID: 28079941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Baseline intrinsic flammability of Earth's ecosystems estimated from paleoatmospheric oxygen over the past 350 million years.
    Belcher CM; Yearsley JM; Hadden RM; McElwain JC; Rein G
    Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22448-53. PubMed ID: 21149686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fire-adapted Gondwanan Angiosperm floras evolved in the Cretaceous.
    Lamont BB; He T
    BMC Evol Biol; 2012 Nov; 12():223. PubMed ID: 23171161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fire and the spread of flowering plants in the Cretaceous.
    Bond WJ; Scott AC
    New Phytol; 2010 Dec; 188(4):1137-50. PubMed ID: 20819174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution.
    Feild TS; Brodribb TJ; Iglesias A; Chatelet DS; Baresch A; Upchurch GR; Gomez B; Mohr BA; Coiffard C; Kvacek J; Jaramillo C
    Proc Natl Acad Sci U S A; 2011 May; 108(20):8363-6. PubMed ID: 21536892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle.
    Poulter B; Frank D; Ciais P; Myneni RB; Andela N; Bi J; Broquet G; Canadell JG; Chevallier F; Liu YY; Running SW; Sitch S; van der Werf GR
    Nature; 2014 May; 509(7502):600-3. PubMed ID: 24847888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Petrographic carbon in ancient sediments constrains Proterozoic Era atmospheric oxygen levels.
    Canfield DE; van Zuilen MA; Nabhan S; Bjerrum CJ; Zhang S; Wang H; Wang X
    Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34074783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fire-adapted traits of Pinus arose in the fiery Cretaceous.
    He T; Pausas JG; Belcher CM; Schwilk DW; Lamont BB
    New Phytol; 2012 May; 194(3):751-759. PubMed ID: 22348443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of Earth's atmospheric oxygen and fuel moisture in smouldering wildfires.
    Huang X; Rein G
    Sci Total Environ; 2016 Dec; 572():1440-1446. PubMed ID: 27131637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The long-term carbon cycle, fossil fuels and atmospheric composition.
    Berner RA
    Nature; 2003 Nov; 426(6964):323-6. PubMed ID: 14628061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans.
    Hamilton TL; Bryant DA; Macalady JL
    Environ Microbiol; 2016 Feb; 18(2):325-40. PubMed ID: 26549614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Earliest land plants created modern levels of atmospheric oxygen.
    Lenton TM; Dahl TW; Daines SJ; Mills BJ; Ozaki K; Saltzman MR; Porada P
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9704-9. PubMed ID: 27528678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Form, function and environments of the early angiosperms: merging extant phylogeny and ecophysiology with fossils.
    Feild TS; Arens NC
    New Phytol; 2005 May; 166(2):383-408. PubMed ID: 15819904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From fiery beginnings: wildfires facilitated the spread of angiosperms in the Cretaceous.
    Belcher CM
    New Phytol; 2010 Dec; 188(4):913-5. PubMed ID: 21105321
    [No Abstract]   [Full Text] [Related]  

  • 17. The role of driving factors in historical and projected carbon dynamics of upland ecosystems in Alaska.
    Genet H; He Y; Lyu Z; McGuire AD; Zhuang Q; Clein J; D'Amore D; Bennett A; Breen A; Biles F; Euskirchen ES; Johnson K; Kurkowski T; Kushch Schroder S; Pastick N; Rupp TS; Wylie B; Zhang Y; Zhou X; Zhu Z
    Ecol Appl; 2018 Jan; 28(1):5-27. PubMed ID: 29044791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microaerobic steroid biosynthesis and the molecular fossil record of Archean life.
    Waldbauer JR; Newman DK; Summons RE
    Proc Natl Acad Sci U S A; 2011 Aug; 108(33):13409-14. PubMed ID: 21825157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen dynamics in the aftermath of the Great Oxidation of Earth's atmosphere.
    Canfield DE; Ngombi-Pemba L; Hammarlund EU; Bengtson S; Chaussidon M; Gauthier-Lafaye F; Meunier A; Riboulleau A; Rollion-Bard C; Rouxel O; Asael D; Pierson-Wickmann AC; El Albani A
    Proc Natl Acad Sci U S A; 2013 Oct; 110(42):16736-41. PubMed ID: 24082125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Cretaceous origin for fire adaptations in the Cape flora.
    He T; Lamont BB; Manning J
    Sci Rep; 2016 Oct; 6():34880. PubMed ID: 27703273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.