BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 33479404)

  • 1. Cancer cell enrichment on a centrifugal microfluidic platform using hydrodynamic and magnetophoretic techniques.
    Shamloo A; Naghdloo A; Besanjideh M
    Sci Rep; 2021 Jan; 11(1):1939. PubMed ID: 33479404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Study of a Centrifugal Platform for the Inertial Separation of Circulating Tumor Cells Using Contraction-Expansion Array Microchannels.
    Ebrahimi S; Tahmasebipour M
    Arch Razi Inst; 2022 Apr; 77(2):647-660. PubMed ID: 36284940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An experimental study of centrifugal microfluidic platforms for magnetic-inertial separation of circulating tumor cells using contraction-expansion and zigzag arrays.
    Momeni M; Shamloo A; Hasani-Gangaraj M; Dezhkam R
    J Chromatogr A; 2023 Sep; 1706():464249. PubMed ID: 37531849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformability and size-based cancer cell separation using an integrated microfluidic device.
    Pang L; Shen S; Ma C; Ma T; Zhang R; Tian C; Zhao L; Liu W; Wang J
    Analyst; 2015 Nov; 140(21):7335-46. PubMed ID: 26366443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hydrodynamic-based dual-function microfluidic chip for high throughput discriminating tumor cells.
    Wei YJ; Wei X; Zhang X; Wu CX; Cai JY; Chen ML; Wang JH
    Talanta; 2024 Jun; 273():125884. PubMed ID: 38508128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device.
    Lee MG; Choi S; Park JK
    Lab Chip; 2009 Nov; 9(21):3155-60. PubMed ID: 19823733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High purity microfluidic sorting and in situ inactivation of circulating tumor cells based on multifunctional magnetic composites.
    Xu H; Dong B; Xu S; Xu S; Sun X; Sun J; Yang Y; Xu L; Bai X; Zhang S; Yin Z; Song H
    Biomaterials; 2017 Sep; 138():69-79. PubMed ID: 28554009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capture and separation of biomolecules using magnetic beads in a simple microfluidic channel without an external flow device.
    Wang J; Morabito K; Erkers T; Tripathi A
    Analyst; 2013 Nov; 138(21):6573-81. PubMed ID: 24051541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Cell Isolation of Circulating Tumor Cells from Whole Blood by Lateral Magnetophoretic Microseparation and Microfluidic Dispensing.
    Kim J; Cho H; Han SI; Han KH
    Anal Chem; 2016 May; 88(9):4857-63. PubMed ID: 27093098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-in-one centrifugal microfluidic device for size-selective circulating tumor cell isolation with high purity.
    Lee A; Park J; Lim M; Sunkara V; Kim SY; Kim GH; Kim MH; Cho YK
    Anal Chem; 2014 Nov; 86(22):11349-56. PubMed ID: 25317565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a Hybrid Inertial and Magnetophoretic Microfluidic Device for CTCs Separation from Blood.
    Nasiri R; Shamloo A; Akbari J
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double spiral microchannel for label-free tumor cell separation and enrichment.
    Sun J; Li M; Liu C; Zhang Y; Liu D; Liu W; Hu G; Jiang X
    Lab Chip; 2012 Oct; 12(20):3952-60. PubMed ID: 22868446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic magnetophoretic separations of immunomagnetically labeled rare mammalian cells.
    Forbes TP; Forry SP
    Lab Chip; 2012 Apr; 12(8):1471-9. PubMed ID: 22395226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress.
    Lee MG; Shin JH; Bae CY; Choi S; Park JK
    Anal Chem; 2013 Jul; 85(13):6213-8. PubMed ID: 23724953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle modification of microfluidic cell separation for cancer cell detection and isolation.
    Zhou Y; Dong Z; Andarge H; Li W; Pappas D
    Analyst; 2019 Dec; 145(1):257-267. PubMed ID: 31746823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow enhanced non-linear magnetophoretic separation of beads based on magnetic susceptibility.
    Li P; Kilinc D; Ran YF; Lee GU
    Lab Chip; 2013 Nov; 13(22):4400-8. PubMed ID: 24061548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic channel optimization to improve hydrodynamic dissociation of cell aggregates and tissue.
    Qiu X; Huang JH; Westerhof TM; Lombardo JA; Henrikson KM; Pennell M; Pourfard PP; Nelson EL; Nath P; Haun JB
    Sci Rep; 2018 Feb; 8(1):2774. PubMed ID: 29426941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA fragment-assisted microfluidic chip for capture and release of circulating tumor cells.
    Chen D; Wen J; Zeng S; Ma H
    Electrophoresis; 2019 Nov; 40(21):2845-2852. PubMed ID: 31267582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel platform for minimizing cell loss on separation process: Droplet-based magnetically activated cell separator.
    Kim Y; Hong S; Lee SH; Lee K; Yun S; Kang Y; Paek KK; Ju BK; Kim B
    Rev Sci Instrum; 2007 Jul; 78(7):074301. PubMed ID: 17672779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches.
    Dalili A; Samiei E; Hoorfar M
    Analyst; 2018 Dec; 144(1):87-113. PubMed ID: 30402633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.