These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 33479757)
1. A rarefaction-based extension of the LDM for testing presence-absence associations in the microbiome. Hu YJ; Lane A; Satten GA Bioinformatics; 2021 Jul; 37(12):1652-1657. PubMed ID: 33479757 [TBL] [Abstract][Full Text] [Related]
2. A rarefaction-without-resampling extension of PERMANOVA for testing presence-absence associations in the microbiome. Hu YJ; Satten GA Bioinformatics; 2022 Aug; 38(15):3689-3697. PubMed ID: 35723568 [TBL] [Abstract][Full Text] [Related]
3. Testing hypotheses about the microbiome using the linear decomposition model (LDM). Hu YJ; Satten GA Bioinformatics; 2020 Aug; 36(14):4106-4115. PubMed ID: 32315393 [TBL] [Abstract][Full Text] [Related]
4. Compositional analysis of microbiome data using the linear decomposition model (LDM). Hu YJ; Satten GA bioRxiv; 2023 May; ():. PubMed ID: 37398068 [TBL] [Abstract][Full Text] [Related]
5. A new approach to testing mediation of the microbiome at both the community and individual taxon levels. Yue Y; Hu YJ Bioinformatics; 2022 Jun; 38(12):3173-3180. PubMed ID: 35512399 [TBL] [Abstract][Full Text] [Related]
6. Integrative analysis of relative abundance data and presence-absence data of the microbiome using the LDM. Zhu Z; Satten GA; Hu YJ Bioinformatics; 2022 May; 38(10):2915-2917. PubMed ID: 35561163 [TBL] [Abstract][Full Text] [Related]
7. Compositional analysis of microbiome data using the linear decomposition model (LDM). Hu YJ; Satten GA Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37930883 [TBL] [Abstract][Full Text] [Related]
8. Testing microbiome associations with survival times at both the community and individual taxon levels. Hu Y; Li Y; Satten GA; Hu YJ PLoS Comput Biol; 2022 Sep; 18(9):e1010509. PubMed ID: 36103548 [TBL] [Abstract][Full Text] [Related]
9. Constraining PERMANOVA and LDM to within-set comparisons by projection improves the efficiency of analyses of matched sets of microbiome data. Zhu Z; Satten GA; Mitchell C; Hu YJ Microbiome; 2021 Jun; 9(1):133. PubMed ID: 34108046 [TBL] [Abstract][Full Text] [Related]
10. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
11. To rarefy or not to rarefy: robustness and efficiency trade-offs of rarefying microbiome data. Hong J; Karaoz U; de Valpine P; Fithian W Bioinformatics; 2022 Apr; 38(9):2389-2396. PubMed ID: 35212706 [TBL] [Abstract][Full Text] [Related]
12. Transformation and differential abundance analysis of microbiome data incorporating phylogeny. Zhou C; Zhao H; Wang T Bioinformatics; 2021 Dec; 37(24):4652-4660. PubMed ID: 34302462 [TBL] [Abstract][Full Text] [Related]
13. RTK: efficient rarefaction analysis of large datasets. Saary P; Forslund K; Bork P; Hildebrand F Bioinformatics; 2017 Aug; 33(16):2594-2595. PubMed ID: 28398468 [TBL] [Abstract][Full Text] [Related]
14. Normalization and microbial differential abundance strategies depend upon data characteristics. Weiss S; Xu ZZ; Peddada S; Amir A; Bittinger K; Gonzalez A; Lozupone C; Zaneveld JR; Vázquez-Baeza Y; Birmingham A; Hyde ER; Knight R Microbiome; 2017 Mar; 5(1):27. PubMed ID: 28253908 [TBL] [Abstract][Full Text] [Related]
15. Improved normalization of species count data in ecology by scaling with ranked subsampling (SRS): application to microbial communities. Beule L; Karlovsky P PeerJ; 2020; 8():e9593. PubMed ID: 32832266 [TBL] [Abstract][Full Text] [Related]
16. Assessing the efficacy of dredged materials from Lake Panasoffkee, Florida: implication to environment and agriculture. Part 1: Soil and environmental quality aspect. Sigua GC; Holtkamp ML; Coleman SW Environ Sci Pollut Res Int; 2004; 11(5):321-6. PubMed ID: 15506635 [TBL] [Abstract][Full Text] [Related]
17. pldist: ecological dissimilarities for paired and longitudinal microbiome association analysis. Plantinga AM; Chen J; Jenq RR; Wu MC Bioinformatics; 2019 Oct; 35(19):3567-3575. PubMed ID: 30863868 [TBL] [Abstract][Full Text] [Related]
18. Response to letter to the editor from Dr Rahman Shiri: The challenging topic of suicide across occupational groups. Niedhammer I; Milner A; Witt K; Klingelschmidt J; Khireddine-Medouni I; Alexopoulos EC; Toivanen S; Chastang JF; LaMontagne AD Scand J Work Environ Health; 2018 Jan; 44(1):108-110. PubMed ID: 29218357 [TBL] [Abstract][Full Text] [Related]
19. Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach. Guo B; Wu B Bioinformatics; 2019 Jul; 35(13):2251-2257. PubMed ID: 30476000 [TBL] [Abstract][Full Text] [Related]
20. Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. Krewski D; Jerrett M; Burnett RT; Ma R; Hughes E; Shi Y; Turner MC; Pope CA; Thurston G; Calle EE; Thun MJ; Beckerman B; DeLuca P; Finkelstein N; Ito K; Moore DK; Newbold KB; Ramsay T; Ross Z; Shin H; Tempalski B Res Rep Health Eff Inst; 2009 May; (140):5-114; discussion 115-36. PubMed ID: 19627030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]