These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Transcriptomics and mechanistic elucidation of Alzheimer's disease risk genes in the brain and in vitro models. Martiskainen H; Viswanathan J; Nykänen NP; Kurki M; Helisalmi S; Natunen T; Sarajärvi T; Kurkinen KM; Pursiheimo JP; Rauramaa T; Alafuzoff I; Jääskeläinen JE; Leinonen V; Soininen H; Haapasalo A; Huttunen HJ; Hiltunen M Neurobiol Aging; 2015 Feb; 36(2):1221.e15-28. PubMed ID: 25281018 [TBL] [Abstract][Full Text] [Related]
43. Dickkopf 3 (Dkk3) Improves Amyloid-β Pathology, Cognitive Dysfunction, and Cerebral Glucose Metabolism in a Transgenic Mouse Model of Alzheimer's Disease. Zhang L; Sun C; Jin Y; Gao K; Shi X; Qiu W; Ma C; Zhang L J Alzheimers Dis; 2017; 60(2):733-746. PubMed ID: 28922151 [TBL] [Abstract][Full Text] [Related]
44. Expression of microRNA-34a in Alzheimer's disease brain targets genes linked to synaptic plasticity, energy metabolism, and resting state network activity. Sarkar S; Jun S; Rellick S; Quintana DD; Cavendish JZ; Simpkins JW Brain Res; 2016 Sep; 1646():139-151. PubMed ID: 27235866 [TBL] [Abstract][Full Text] [Related]
45. ABCA7 Genotypes Confer Alzheimer's Disease Risk by Modulating Amyloid-β Pathology. Zhao QF; Wan Y; Wang HF; Sun FR; Hao XK; Tan MS; Tan CC; Zhang DQ; Tan L; Yu JT; J Alzheimers Dis; 2016 Mar; 52(2):693-703. PubMed ID: 27003212 [TBL] [Abstract][Full Text] [Related]
46. Age- and Brain Region-Specific Changes of Glucose Metabolic Disorder, Learning, and Memory Dysfunction in Early Alzheimer's Disease Assessed in APP/PS1 Transgenic Mice Using Li XY; Men WW; Zhu H; Lei JF; Zuo FX; Wang ZJ; Zhu ZH; Bao XJ; Wang RZ Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27763550 [TBL] [Abstract][Full Text] [Related]
47. A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer's disease. Croteau E; Castellano CA; Fortier M; Bocti C; Fulop T; Paquet N; Cunnane SC Exp Gerontol; 2018 Jul; 107():18-26. PubMed ID: 28709938 [TBL] [Abstract][Full Text] [Related]
48. Gut microbiota manipulation through probiotics oral administration restores glucose homeostasis in a mouse model of Alzheimer's disease. Bonfili L; Cecarini V; Gogoi O; Berardi S; Scarpona S; Angeletti M; Rossi G; Eleuteri AM Neurobiol Aging; 2020 Mar; 87():35-43. PubMed ID: 31813629 [TBL] [Abstract][Full Text] [Related]
49. Does Alzheimer's disease stem in the gastrointestinal system? Khodabakhsh P; Bazrgar M; Dargahi L; Mohagheghi F; Asgari Taei A; Parvardeh S; Ahmadiani A Life Sci; 2021 Dec; 287():120088. PubMed ID: 34715145 [TBL] [Abstract][Full Text] [Related]
50. Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach. Hu YS; Xin J; Hu Y; Zhang L; Wang J Alzheimers Res Ther; 2017 Apr; 9(1):29. PubMed ID: 28446202 [TBL] [Abstract][Full Text] [Related]
51. Liraglutide Protects Against Brain Amyloid-β Duarte AI; Candeias E; Alves IN; Mena D; Silva DF; Machado NJ; Campos EJ; Santos MS; Oliveira CR; Moreira PI Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32143329 [TBL] [Abstract][Full Text] [Related]
53. White Matter Lipids as a Ketogenic Fuel Supply in Aging Female Brain: Implications for Alzheimer's Disease. Klosinski LP; Yao J; Yin F; Fonteh AN; Harrington MG; Christensen TA; Trushina E; Brinton RD EBioMedicine; 2015 Dec; 2(12):1888-904. PubMed ID: 26844268 [TBL] [Abstract][Full Text] [Related]
54. Molecular pathophysiology of impaired glucose metabolism, mitochondrial dysfunction, and oxidative DNA damage in Alzheimer's disease brain. Abolhassani N; Leon J; Sheng Z; Oka S; Hamasaki H; Iwaki T; Nakabeppu Y Mech Ageing Dev; 2017 Jan; 161(Pt A):95-104. PubMed ID: 27233446 [TBL] [Abstract][Full Text] [Related]
55. Diminished O-GlcNAcylation in Alzheimer's disease is strongly correlated with mitochondrial anomalies. Pinho TS; Correia SC; Perry G; Ambrósio AF; Moreira PI Biochim Biophys Acta Mol Basis Dis; 2019 Aug; 1865(8):2048-2059. PubMed ID: 30412792 [TBL] [Abstract][Full Text] [Related]
56. Role of cholesterol in APP metabolism and its significance in Alzheimer's disease pathogenesis. Maulik M; Westaway D; Jhamandas JH; Kar S Mol Neurobiol; 2013 Feb; 47(1):37-63. PubMed ID: 22983915 [TBL] [Abstract][Full Text] [Related]
57. Integrating network, sequence and functional features using machine learning approaches towards identification of novel Alzheimer genes. Jamal S; Goyal S; Shanker A; Grover A BMC Genomics; 2016 Oct; 17(1):807. PubMed ID: 27756223 [TBL] [Abstract][Full Text] [Related]
58. The Dual Role of Glutamatergic Neurotransmission in Alzheimer's Disease: From Pathophysiology to Pharmacotherapy. Bukke VN; Archana M; Villani R; Romano AD; Wawrzyniak A; Balawender K; Orkisz S; Beggiato S; Serviddio G; Cassano T Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33050345 [TBL] [Abstract][Full Text] [Related]
59. Abnormal amyloid beta metabolism in systemic abnormalities and Alzheimer's pathology: Insights and therapeutic approaches from periphery. Ullah R; Park TJ; Huang X; Kim MO Ageing Res Rev; 2021 Nov; 71():101451. PubMed ID: 34450351 [TBL] [Abstract][Full Text] [Related]
60. Apolipoprotein E, not fibrillar β-amyloid, reduces cerebral glucose metabolism in normal aging. Jagust WJ; Landau SM; J Neurosci; 2012 Dec; 32(50):18227-33. PubMed ID: 23238736 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]