These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 33480252)
1. Surface Fluorination Engineering of NiFe Prussian Blue Analogue Derivatives for Highly Efficient Oxygen Evolution Reaction. Ma F; Wu Q; Liu M; Zheng L; Tong F; Wang Z; Wang P; Liu Y; Cheng H; Dai Y; Zheng Z; Fan Y; Huang B ACS Appl Mater Interfaces; 2021 Feb; 13(4):5142-5152. PubMed ID: 33480252 [TBL] [Abstract][Full Text] [Related]
3. Enhancing Oxygen Evolution Reaction Performance in Prussian Blue Analogues: Triple-Play of Metal Exsolution, Hollow Interiors, and Anionic Regulation. Wang S; Huo W; Feng H; Xie Z; Shang JK; Formo EV; Camargo PHC; Fang F; Jiang J Adv Mater; 2023 Nov; 35(45):e2304494. PubMed ID: 37473821 [TBL] [Abstract][Full Text] [Related]
4. Boosting oxygen evolution reaction activity and durability of phosphate doped Ni(OH) Zhou C; Hu E; Liu S; Cao W; Zhu Y; Zhang H; Zhu T; Gao X; Lin Z J Colloid Interface Sci; 2022 Sep; 622():319-326. PubMed ID: 35512595 [TBL] [Abstract][Full Text] [Related]
5. Engineering the Electronic Structures of Metal-Organic Framework Nanosheets via Synergistic Doping of Metal Ions and Counteranions for Efficient Water Oxidation. Zhao ZY; Sun X; Gu H; Niu Z; Braunstein P; Lang JP ACS Appl Mater Interfaces; 2022 Apr; 14(13):15133-15140. PubMed ID: 35324163 [TBL] [Abstract][Full Text] [Related]
7. Fluoride-Induced Dynamic Surface Self-Reconstruction Produces Unexpectedly Efficient Oxygen-Evolution Catalyst. Zhang B; Jiang K; Wang H; Hu S Nano Lett; 2019 Jan; 19(1):530-537. PubMed ID: 30517786 [TBL] [Abstract][Full Text] [Related]
8. Engineering Bimetallic NiFe-Based Hydroxides/Selenides Heterostructure Nanosheet Arrays for Highly-Efficient Oxygen Evolution Reaction. Liu C; Han Y; Yao L; Liang L; He J; Hao Q; Zhang J; Li Y; Liu H Small; 2021 Feb; 17(7):e2007334. PubMed ID: 33501753 [TBL] [Abstract][Full Text] [Related]
9. Operando-reconstructed polyatomic ion layers boost the activity and stability of industrial current-density water splitting. Zhao Y; Wu Y; Wen Q; Huang D; Yang R; Wang H; Xu Y; Sun M; Liu Y; Fang J; Zhai T; Yu L Sci Bull (Beijing); 2024 Nov; 69(21):3384-3394. PubMed ID: 39034269 [TBL] [Abstract][Full Text] [Related]
10. Fluorination-enabled Reconstruction of NiFe Electrocatalysts for Efficient Water Oxidation. Xu Q; Jiang H; Duan X; Jiang Z; Hu Y; Boettcher SW; Zhang W; Guo S; Li C Nano Lett; 2021 Jan; 21(1):492-499. PubMed ID: 33258608 [TBL] [Abstract][Full Text] [Related]
11. Achieving High OER Performance by Tuning the Co/Mn Content in Prussian Blue Analogues. Wu C; Wang J; Li J; Zhang H; Sharma S; Titheridge L; Tiffin C; Fan Y; Zhao L; Yang W; Li Z; Peng J; Wang J; Marshall AT ACS Appl Mater Interfaces; 2024 Oct; 16(43):58703-58710. PubMed ID: 39418596 [TBL] [Abstract][Full Text] [Related]
12. The activation of inert NiFe Prussian Blue analogues to boost oxygen evolution reaction activity. Zhang C; Chen J; Zhang J; Luo Y; Chen Y; Xue Y; Yan Y; Jiao Y; Wang G; Wang R J Colloid Interface Sci; 2022 Feb; 607(Pt 2):967-977. PubMed ID: 34598033 [TBL] [Abstract][Full Text] [Related]
13. Oxygen-Doped Nickel Iron Phosphide Nanocube Arrays Grown on Ni Foam for Oxygen Evolution Electrocatalysis. Xi W; Yan G; Lang Z; Ma Y; Tan H; Zhu H; Wang Y; Li Y Small; 2018 Oct; 14(42):e1802204. PubMed ID: 30239123 [TBL] [Abstract][Full Text] [Related]
14. Partially amorphous NiFe layered double hydroxides enabling highly-efficiency oxygen evolution reaction at high current density. Yang G; Fang D; Fu Y; Gao D; Cheng C; Li J J Colloid Interface Sci; 2025 Jan; 678(Pt C):717-725. PubMed ID: 39307060 [TBL] [Abstract][Full Text] [Related]
15. Oxygen Plasma Activation of Carbon Nanotubes-Interconnected Prussian Blue Analogue for Oxygen Evolution Reaction. Lin YC; Chuang CH; Hsiao LY; Yeh MH; Ho KC ACS Appl Mater Interfaces; 2020 Sep; 12(38):42634-42643. PubMed ID: 32845608 [TBL] [Abstract][Full Text] [Related]
16. Engineering Self-Reconstruction via Flexible Components in Layered Double Hydroxides for Superior-Evolving Performance. Liu J; Ding P; Zhu Z; Du W; Xu X; Hu J; Zhou Y; Zeng H Small; 2021 Sep; 17(38):e2101671. PubMed ID: 34342939 [TBL] [Abstract][Full Text] [Related]
17. Graphene quantum dots induced defect-rich NiFe Prussian blue analogue as an efficient electrocatalyst for oxygen evolution reaction. Lin YC; Aulia S; Yeh MH; Hsiao LY; Tarigan AM; Ho KC J Colloid Interface Sci; 2023 Oct; 648():193-202. PubMed ID: 37301144 [TBL] [Abstract][Full Text] [Related]
18. 3D Spatial Combination of CN Vacancy-Mediated NiFe-PBA with N-Doped Carbon Nanofibers Network Toward Free-Standing Bifunctional Electrode for Zn-Air Batteries. Lai C; Li H; Sheng Y; Zhou M; Wang W; Gong M; Wang K; Jiang K Adv Sci (Weinh); 2022 Apr; 9(11):e2105925. PubMed ID: 35191617 [TBL] [Abstract][Full Text] [Related]
19. In Situ Derived Ni Wang AL; Dong YT; Li M; Liang C; Li GR ACS Appl Mater Interfaces; 2017 Oct; 9(40):34954-34960. PubMed ID: 28926229 [TBL] [Abstract][Full Text] [Related]
20. Core-bishell NiFe@NC@MoS Yan Z; Guo S; Li C; Tan Z; Wang L; Wang W; Li G; Liu Y; Zhang H; Tang M; Feng Z; Wang Y; Li B J Colloid Interface Sci; 2024 Nov; 674():823-833. PubMed ID: 38955013 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]