These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 33480252)
21. Oxygen vacancy-rich amorphous porous NiFe(OH) Wang S; Ge X; Lv C; Hu C; Guan H; Wu J; Wang Z; Yang X; Shi Y; Song J; Zhang Z; Watanabe A; Cai J Nanoscale; 2020 May; 12(17):9557-9568. PubMed ID: 32315004 [TBL] [Abstract][Full Text] [Related]
22. Construction of Defect-Rich Ni-Fe-Doped K Liao H; Guo X; Hou Y; Liang H; Zhou Z; Yang H Small; 2020 Mar; 16(10):e1905223. PubMed ID: 32049431 [TBL] [Abstract][Full Text] [Related]
23. Operando Spectroscopic Identification of Active Sites in NiFe Prussian Blue Analogues as Electrocatalysts: Activation of Oxygen Atoms for Oxygen Evolution Reaction. Su X; Wang Y; Zhou J; Gu S; Li J; Zhang S J Am Chem Soc; 2018 Sep; 140(36):11286-11292. PubMed ID: 30111100 [TBL] [Abstract][Full Text] [Related]
24. Controlled Self-Assembled NiFe Layered Double Hydroxides/Reduced Graphene Oxide Nanohybrids Based on the Solid-Phase Exfoliation Strategy as an Excellent Electrocatalyst for the Oxygen Evolution Reaction. Shen J; Zhang P; Xie R; Chen L; Li M; Li J; Ji B; Hu Z; Li J; Song L; Wu Y; Zhao X ACS Appl Mater Interfaces; 2019 Apr; 11(14):13545-13556. PubMed ID: 30892865 [TBL] [Abstract][Full Text] [Related]
25. Reprogramming thermodynamic-limiting oxidation cycle in NiFe-based oxygen evolution electrocatalyst through Mo doping induced surface reconstruction. Liu Y; Wang X; Zhu Y; Wang H; Yu J; Liu H; Ge S J Colloid Interface Sci; 2022 Sep; 622():443-451. PubMed ID: 35526408 [TBL] [Abstract][Full Text] [Related]
26. In Situ Anchoring Polymetallic Phosphide Nanoparticles within Porous Prussian Blue Analogue Nanocages for Boosting Oxygen Evolution Catalysis. Zhang G; Li Y; Xiao X; Shan Y; Bai Y; Xue HG; Pang H; Tian Z; Xu Q Nano Lett; 2021 Apr; 21(7):3016-3025. PubMed ID: 33769812 [TBL] [Abstract][Full Text] [Related]
27. Constructing highly active Co sites in Prussian blue analogues for boosting electrocatalytic water oxidation. Zou H; Liu X; Wang K; Duan Y; Wang C; Zhang B; Zhou K; Yu D; Gan LY; Zhou X Chem Commun (Camb); 2021 Aug; 57(65):8011-8014. PubMed ID: 34286711 [TBL] [Abstract][Full Text] [Related]
28. Tuning Metal Elements in Open Frameworks for Efficient Oxygen Evolution and Oxygen Reduction Reaction Catalysts. Ren M; Lei J; Zhang J; Yakobson BI; Tour JM ACS Appl Mater Interfaces; 2021 Sep; 13(36):42715-42723. PubMed ID: 34473475 [TBL] [Abstract][Full Text] [Related]
29. In-situ synthesis to promote surface reconstruction of metal-organic frameworks for high-performance water/seawater oxidation. Na G; Zheng H; Chen M; Sun H; Zhou T; Wu Y; Li D; Lu Q; Chen Y; Zhao J; Zhang Y; He T; Xiao B; Zhang J; Liu F; Cui H; Liu Q J Colloid Interface Sci; 2025 Jan; 678(Pt A):795-805. PubMed ID: 39217695 [TBL] [Abstract][Full Text] [Related]
30. Electrochemical Reconstruction of NiFe/NiFeOOH Superparamagnetic Core/Catalytic Shell Heterostructure for Magnetic Heating Enhancement of Oxygen Evolution Reaction. Peng D; Hu C; Luo X; Huang J; Ding Y; Zhou W; Zhou H; Yang Y; Yu T; Lei W; Yuan C Small; 2023 Jan; 19(3):e2205665. PubMed ID: 36404111 [TBL] [Abstract][Full Text] [Related]
31. Magnesium-promoted rapid self-reconstruction of NiFe-based electrocatalysts toward efficient oxygen evolution. Jin B; Zhang W; Wei S; Zhang K; Wang H; Liu G; Li J J Colloid Interface Sci; 2025 Jan; 677(Pt A):208-216. PubMed ID: 39089127 [TBL] [Abstract][Full Text] [Related]
32. Different Growth Behavior of MOF-on-MOF Heterostructures to Enhance Oxygen Evolution. Mao L; Chen D; Guo Y; Han C; Zhou X; Yang Z; Huang S; Qian J ChemSusChem; 2023 Jan; 16(1):e202201947. PubMed ID: 36302718 [TBL] [Abstract][Full Text] [Related]
33. Engineering Lithium Ions Embedded in NiFe Layered Double Hydroxide Lattices To Activate Laminated Ni Sun Z; Yuan M; Shi K; Liu Y; Wang D; Nan C; Li H; Sun G; Yang X Chemistry; 2020 Jun; 26(32):7244-7249. PubMed ID: 32153069 [TBL] [Abstract][Full Text] [Related]
34. Enabling efficient ample-level oxygen evolution on nickel-iron Prussian blue analogue/hydroxide via hierarchical mass transfer channel construction. Sun S; Guo Y; Xu G; Li J; Cai W J Colloid Interface Sci; 2024 Apr; 659():40-47. PubMed ID: 38157725 [TBL] [Abstract][Full Text] [Related]
35. Ruthenium-doped NiFe-based metal-organic framework nanoparticles as highly efficient catalysts for the oxygen evolution reaction. Lin Y; Zhao L; Wang L; Gong Y Dalton Trans; 2021 Mar; 50(12):4280-4287. PubMed ID: 33688870 [TBL] [Abstract][Full Text] [Related]
36. Accelerated Oxygen Evolution Kinetics by Engineering Heterojunction Coupling of Amorphous NiFe Hydr(oxy)oxide Nanosheet Arrays on Self-Supporting Ni-MOFs. Zhe T; Li F; Ma K; Liu M; Li R; Li M; Wang C; Luo Q; Lü X; Wang L Small; 2023 Oct; 19(43):e2303303. PubMed ID: 37376812 [TBL] [Abstract][Full Text] [Related]
37. In-situ surface reconstruction of single-crystal (NiFe) Zhao J; Wang F; Lu X; Lv T; Li Y; Hao Q; Liang L; Liu H J Colloid Interface Sci; 2023 Jul; 642():532-539. PubMed ID: 37028160 [TBL] [Abstract][Full Text] [Related]
38. Hierarchical porous tri-metallic NiCoFe-Se/CFP derived from Ni-Co-Fe Prussian blue analogues as efficient electrocatalyst for oxygen evolution reaction. Guo Y; Jia K; Dai F; Liu Y; Zhang C; Su J; Wang K J Colloid Interface Sci; 2023 Jul; 642():638-647. PubMed ID: 37030200 [TBL] [Abstract][Full Text] [Related]
39. PBA@POM Hybrids as Efficient Electrocatalysts for the Oxygen Evolution Reaction. Wang Y; Wang Y; Zhang L; Liu CS; Pang H Chem Asian J; 2019 Aug; 14(16):2790-2795. PubMed ID: 31246373 [TBL] [Abstract][Full Text] [Related]
40. Electronic modulation of oxygen evolution on metal doped NiFe layered double hydroxides. Liu X; Fan X; Huang H; HaipingLin ; Gao J J Colloid Interface Sci; 2021 Apr; 587():385-392. PubMed ID: 33360908 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]