These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 33480272)

  • 1. Recent advances in the fabrication and bio-medical applications of self-assembled dipeptide nanostructures.
    Chibh S; Mishra J; Kour A; Chauhan VS; Panda JJ
    Nanomedicine (Lond); 2021 Jan; 16(2):139-163. PubMed ID: 33480272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Assembly of Cyclic Dipeptides: Platforms for Functional Materials.
    Chen Y; Tao K; Ji W; Makam P; Rencus-Lazar S; Gazit E
    Protein Pept Lett; 2020; 27(8):688-697. PubMed ID: 32048950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dipeptide nanostructures: Synthesis, interactions, advantages and biomedical applications.
    Acet Ö; Shcharbin D; Zhogla V; Kirsanov P; Halets-Bui I; Önal Acet B; Gök T; Bryszewska M; Odabaşı M
    Colloids Surf B Biointerfaces; 2023 Feb; 222():113031. PubMed ID: 36435026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanding the solvent chemical space for self-assembly of dipeptide nanostructures.
    Mason TO; Chirgadze DY; Levin A; Adler-Abramovich L; Gazit E; Knowles TP; Buell AK
    ACS Nano; 2014 Feb; 8(2):1243-53. PubMed ID: 24422499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of Supramolecular Nanostructures through in Situ Self-Assembly and Post-Assembly Modification of a Biocatalytically Constructed Dipeptide Hydrazide.
    Shintani Y; Ohtomi T; Shibata A; Kitamura Y; Hirosawa KM; Suzuki KGN; Ikeda M
    Chemistry; 2022 Feb; 28(8):e202104421. PubMed ID: 34984747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designed peptides as model self-assembling nanosystems: characterization and potential biomedical applications.
    Panda JJ; Kaul A; Alam S; Babbar AK; Mishra AK; Chauhan VS
    Ther Deliv; 2011 Feb; 2(2):193-204. PubMed ID: 22833945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic-driven ultrafast self-assembly of a dipeptide into stimuli-responsive 0D, 1D, and 2D nanostructures and as hydrolase mimic.
    Singh A; Joo JU; Kim DP
    Nanoscale; 2022 Oct; 14(40):15010-15020. PubMed ID: 36193959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly and application of diphenylalanine-based nanostructures.
    Yan X; Zhu P; Li J
    Chem Soc Rev; 2010 Jun; 39(6):1877-90. PubMed ID: 20502791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responsive nanostructures from aqueous assembly of rigid-flexible block molecules.
    Kim HJ; Kim T; Lee M
    Acc Chem Res; 2011 Jan; 44(1):72-82. PubMed ID: 21128602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity.
    Schnaider L; Brahmachari S; Schmidt NW; Mensa B; Shaham-Niv S; Bychenko D; Adler-Abramovich L; Shimon LJW; Kolusheva S; DeGrado WF; Gazit E
    Nat Commun; 2017 Nov; 8(1):1365. PubMed ID: 29118336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Self-Assembling Peptides to Integrate Biomolecules into Functional Supramolecular Biomaterials.
    Liu R; Hudalla GA
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31013712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fmoc-Dipeptide/Porphyrin Molar Ratio Dictates Energy Transfer Efficiency in Nanostructures Produced by Biocatalytic Co-Assembly.
    Wijerathne NK; Kumar M; Ulijn RV
    Chemistry; 2019 Sep; 25(51):11847-11851. PubMed ID: 31353639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triggering Supramolecular Hydrogelation Using a Protein-Peptide Coassembly Approach.
    Jain R; Pal VK; Roy S
    Biomacromolecules; 2020 Oct; 21(10):4180-4193. PubMed ID: 32786522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Injectable self-assembled bola-dipeptide hydrogels for sustained photodynamic prodrug delivery and enhanced tumor therapy.
    Zou Q; Chang R; Xing R; Yuan C; Yan X
    J Control Release; 2020 Mar; 319():344-351. PubMed ID: 31917297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual Self-Assembled Nanostructures from Intrinsically Disordered Protein Polymers with LCST Behavior and Antimicrobial Peptides.
    Acosta S; Ye Z; Aparicio C; Alonso M; Rodríguez-Cabello JC
    Biomacromolecules; 2020 Oct; 21(10):4043-4052. PubMed ID: 32786727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the Physical Dimensions of Peptide Nanotubes by Supramolecular Polymer Coassembly.
    Adler-Abramovich L; Marco P; Arnon ZA; Creasey RC; Michaels TC; Levin A; Scurr DJ; Roberts CJ; Knowles TP; Tendler SJ; Gazit E
    ACS Nano; 2016 Aug; 10(8):7436-42. PubMed ID: 27351519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide Nanomaterials for Drug Delivery Applications.
    Pentlavalli S; Coulter S; Laverty G
    Curr Protein Pept Sci; 2020; 21(4):401-412. PubMed ID: 31893991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The physical properties of supramolecular peptide assemblies: from building block association to technological applications.
    Adler-Abramovich L; Gazit E
    Chem Soc Rev; 2014; 43(20):6881-93. PubMed ID: 25099656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SAPdb: A database of short peptides and the corresponding nanostructures formed by self-assembly.
    Mathur D; Kaur H; Dhall A; Sharma N; Raghava GPS
    Comput Biol Med; 2021 Jun; 133():104391. PubMed ID: 33892308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Self-Assembly and Supramolecular Chemistry of Cyclic Peptides.
    Song Q; Cheng Z; Kariuki M; Hall SCL; Hill SK; Rho JY; Perrier S
    Chem Rev; 2021 Nov; 121(22):13936-13995. PubMed ID: 33938738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.